LiTiMg ferrite substrate for circular array of circular patches under external magnetic field

Naveen Kumar Saxena¹, Moh. Ayub Khan², Nitendar Kumar³ and P.K.S. Pourush¹

¹Microwave Lab, Dept. of Physics, Agra College, Agra- 282 002 (U.P), India.
²Dept. of Electronics & Communication, Anand Engineering College, Agra, India.
³Solid State Physics Laboratory, Timarpur, Delhi- 110 007, India.
nav3091@rediffmail.com; ayubkhan48@rediffmail.com; nitendar@rediffmail.com; ppourush@yahoo.co.in

Abstract

A circular array of eight microstrip circular patches modeled on synthesized LiTiMg ferrite substrate has been investigated under the externally applied perpendicular DC magnetic field. LiTiMg ferrite substrate has been synthesized by the Solid State Reaction Technique (SSRT). Here, we also presented a comparison of radiation pattern and some other parameters, when the antenna array is biased and unbiased. Having LiTiMg substrate with perpendicular magnetic field, we reported a reduction of side-lobes, increased directivity and better radiation power response of array.

Keywords: Substituted Li ferrite; microstrip array antenna; X-band frequency range.

List of symbols

\[F_r = \text{resonant frequency}; \]
\[h = \text{height of substrate}; \]
\[a = \text{radius of patch}; \]
\[a_{\text{eff}} = \text{effective radius of patch}; \]
\[\varepsilon_r = \text{dielectric constant}; \]
\[\varepsilon_{\text{eff}} = \text{effective dielectric constant}; \]
\[\mu_r = \text{initial permeability}; \]
\[\mu_{\text{eff}} = \text{effective permeability}; \]
\[K_o = \text{ordinary propagation constant}; \]
\[K_{e,\pm} = \text{extraordinary propagation constant}; \]
\[w = \text{angular frequency}; \]
\[J_{n+1} = (n+1)^{th} \text{order Bessel’s function of first kind}; \]
\[J_{n-1} = (n -1)^{th} \text{order Bessel’s function of first kind}; \]
\[H = \text{bias field}; \]
\[\lambda = \text{wavelength}; \]
\[4\pi M_s = \text{saturation magnetization}; \]
\[\gamma = \text{gyromagnetic ratio (2.8 MHz / Oe)} \]

Introduction

Some extra ordinary characteristics of polycrystalline ferrite over normal dielectric material make it very useful in microwave antenna applications. Different types of polycrystalline ferrites have their specific advantages as Li substituted ferrites has high dielectric constant, low sintering temperature etc. than other substituted ferrites. The reason for using ferrite materials in microstrip structures is that the applied magnetic field changes the permeability and thus the electrical properties of material, which in turn changes the antenna properties. The significance of this is that it is possible to change the antenna characteristics through the DC magnetic field applied externally.

The integration of ferrite technology into microstrip printed circuit antenna has numerous advantages and potential applications. Beam steering, gain and bandwidth enhancement, RCS control, surface wave reduction, switchable and electronic tunability are some of the unique and inherent features of ferrite based microstrip antennas and arrays, which have been discussed by numbers of investigators in recent years (Pozar, 1992; Batchelor et al., 1997, Pourush & Dixit, 1998; Bharadwaj et al., 2001). In the present paper, the concept of tunable antenna has been developed by taking a eight elements circular array of circular patches printed on LiTiMg ferrite substrate in an X band of microwave frequency range.

Theory

The circular array geometry is shown in Fig. 1. It consists of 8 identical elements of radius ‘a’ printed on LiTiMg ferrite substrate of thickness ‘h’. The dielectric constant and saturation magnetization (4\(\pi M_s\)) of substrate is 15 and 2200 Gauss respectively.

For a biased ferrite substrate, a normal incident plane wave may excite two types of waves (ordinary and extraordinary wave). In the case of normal incident magnetic field biasing ordinary wave is same as the plane wave in the dielectric slab. On the other hand, the extraordinary wave is a TE mode polarized parallel to the biasing direction with its phase propagation constant Ke (Pozar, 1992; Pourush & Dixit, 1998).

\[K_e = \frac{w}{2} \sqrt{\varepsilon_{\text{eff}} \times \mu_{\text{eff}}} \]
\[K_o = \frac{w}{2} \sqrt{\varepsilon_r} \]
\[\mu_{\text{eff}} = \frac{\mu^2 - k^2}{\mu} \]
\[\mu = 1 + \frac{w_0 w}{w^2 - w_0^2} \]
\[k = \frac{w w_0}{w^2 - w_0^2} \]

Where,

\[w_0 = \gamma H_o \text{ and } w_m = \gamma 4\pi M_s \]
where H_0 is the bias field, $(4nM_s)$ is the saturation magnetization, γ is the gyromagnetic ratio as $\gamma = 2.8$ MHz/Oe. The frequency range of negative μ_{eff} is:

$$\left[\frac{w_o}{w_o + w_m}\right]^{1/2} < w < \left[\frac{w_o}{w_o + w_m}\right]$$

(6)

The frequency limits define the approximate range within and around which the ferrite exhibit interesting microwave characteristics. The use of the biased field is to control the properties of the extraordinary wave which results a polarized switchable antenna. The antenna is off when extraordinary waves propagate with negative μ_{eff}.

The dispersion curve for this array geometry for four values of biasing is given in Fig. 2.

It is evident from the dispersion effect on ferrite material that there should be a propagating and non-propagating region for an antenna. There is a frequency range bounded by limits, namely cutoff limit or resonance limit. In this where μ_{eff} is negative, the extraordinary wave is highly attenuating and therefore the antenna is effectively off as radiator.

Synthesis of substrate

LiTiMg ferrite has been synthesized using solid state reaction technique (SSRT). The ingredients required for the preparation of these ferrites were calculated on the basis of chemical formula. A small amount of Mn$^{3+}$ ion was also incorporated in the basic composition in order to suppress the formation of Fe$^{2+}$ ions in the ferrites and to influence magnetostriiction being a John Teller ion (Van, 1956). In order to avoid Lithia at high temperatures of sintering, Bi$_2$O$_3$ (0.25 wt %) was added as sintering aid (Pran Kishan et al., 1985). Analytical grade chemicals were used for the preparation of the material. The stoichiometric ratio of the chemicals was thoroughly mixed in a polypropylene jar containing the zirconium basis of chemical formula. A small amount of Mn$^{3+}$ ion

The presintering of the mixed powder has been carried out at \sim750$^\circ$C in a box furnace and soaking time was kept 4 hours. The sieved material was pressed in disk (antenna substrate) and toroidal shapes with the help of suitable dies and using hydraulic pressing technique at pressure of 10 ton/cm2. The substrates and toroids were finally sintered at 1050$^\circ$C for four hours. The heating and cooling cycle of the samples was carried out in the air atmosphere of furnace. The sintered sample so obtained was subjected to cutting, grinding, polishing etc. in order to get specific size and shape. The important material properties such as magnetic and electrical properties were studied (Randhawa et al., 2007). The electrical and magnetic properties of LiTiMg ferrite substrate have been experimentally calculated and are presented in Table 1.

Simulation and characterization

The dimensions of each element are calculated by following equations:

$$f_r = \frac{K_{RM} C}{2\pi \mu_{eff} \sqrt{\varepsilon_{eff} \mu_{eff}}}$$

(7)

The above equation is based on the Cavity model. Using the pattern multiplication approach and neglecting mutual coupling between the elements, the normalized form of the array factor for the present geometry is obtained and given below (Bhal et al., 1980; Balanis, 1997).

$$A^P = \sum_{n=1}^{N} I_n e^{j [\phi (n-\theta) - \phi (\theta)] - j[n \mu_{eff} - \phi (\theta)]}$$

(9)

The total fields of the present array geometry can be expressed by the field of single element multiplied by array factor. Thus the far zone expressions for circular patch microstrip antenna are obtained as follow:

$$E_{gt} = \frac{j \mu_0}{2\pi r} \varepsilon_{eff} \frac{\sinh (kh \cos \theta)}{kh \cos \theta} \times \left[I_{n+1} (k \sin \theta) + I_{n-1} (k \sin \theta) \right]$$

(10)

$$E_{pc} = \frac{j \mu_0}{2\pi r} \varepsilon_{eff} \frac{\sinh (kh \cos \theta)}{kh \cos \theta} \times \left[I_{n+1} (k \sin \theta) - I_{n-1} (k \sin \theta) \right]$$

(11)

Where,

$$k = K_e + K_a \left(\frac{w_o + w_m}{w_o \pm w_m} \right)^{1/2}$$

The parameters related to patch characterization are calculated for biased and unbiased ferrite substrate, listed in Table 2. By the help of these parameters and mathematical software (Mathworks MatLab 7.1), the comparison of radiation patterns are plotted in fig. 3-8 for E-plane, H-plane and array for this geometry. These curves show a comparison between unbiased and biased substituted polycrystalline ferrite substrate array antenna.

The total field pattern $R(\theta, \phi)$ is generally obtained from the relation:

$$R(\theta, \phi) = |E_{gt}|^2 + |E_{pc}|^2$$

(12)

The value of $R(\theta, \phi)$ are computed for a case taking source frequency $f = 10$ GHz, $k = K_e$, $\varepsilon_r = 15$, $h = 0.165$ cm, $a_{eff} = 0.2104$ cm and loss tangent = 0.0005 (Sodha & Srivastav, 1981; Jain, 1993).

Conclusions

The radiation patterns and antenna’s characteristics are calculated and reported in Fig. 3-5 and

Table 1. The electrical & magnetic properties of LiTiMg ferrite substrate

<table>
<thead>
<tr>
<th>Property</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiTiMg Ferrite Characteristics</td>
<td></td>
</tr>
<tr>
<td>Magnetic Saturation ($4nM_s$)</td>
<td>2200 Gauss</td>
</tr>
<tr>
<td>Curie Temp. (T_c)</td>
<td>325 K</td>
</tr>
<tr>
<td>Density (ρ)</td>
<td>4.21 grams/cm3</td>
</tr>
<tr>
<td>Remanence</td>
<td>0.90</td>
</tr>
<tr>
<td>Coercivity</td>
<td>2.54</td>
</tr>
<tr>
<td>Dielectric Constant (ε)</td>
<td>15</td>
</tr>
<tr>
<td>Resonance line Width (ΔH)</td>
<td>290 Oersteds</td>
</tr>
<tr>
<td>Loss Tangent $(\tan \delta)$</td>
<td>< 0.0009</td>
</tr>
</tbody>
</table>
Table 2. Comparison of antenna’s parameters for unbiased and biased case

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unbiased</th>
<th>Biased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Impedance (Z<sub>in</sub>)</td>
<td>936.21 ohms</td>
<td>110.83 ohms</td>
</tr>
<tr>
<td>Admittance (Y)</td>
<td>0.0005 mhos</td>
<td>0.0045 mhos</td>
</tr>
<tr>
<td>Quality Factor (Q)</td>
<td>~30 %</td>
<td>~30 %</td>
</tr>
<tr>
<td>Bandwidth (BW)</td>
<td>~34 dB</td>
<td>~34 dB</td>
</tr>
<tr>
<td>Directivity Gain (D)</td>
<td>3.53</td>
<td>10.51</td>
</tr>
<tr>
<td>Radiation Power (P<sub>r</sub>)</td>
<td>0.267 mW</td>
<td>2.3 mW</td>
</tr>
</tbody>
</table>

Fig. 1. Geometry of eight elements circular array microstrip circular patch antenna

Fig. 2. Dispersion curve (f Vs. K) for plane wave propagation perpendicular to biasing field

Fig. 4. Comparison of H-plane pattern of circular patch microstrip antenna with RHCP for biased case & unbiased case

Fig. 3. Comparison of E-plane pattern of circular patch microstrip antenna with RHCP for biased case and unbiased case

Fig. 5. Comparison of radiation pattern of 8 elements circular array of circular patches microstrip antenna with RHCP for biased and unbiased case

Research article
©Indian Society for Education and Environment (iSee)
Table 1 & 2 respectively. Using SSRT we have synthesized LiTiMg polycrystalline ferrite substrate for 8 elements circular array antenna at 10 GHz of microwave frequency range. Some salient features of this array geometry are summarized as follow:

- E-plane comparison shows that on biasing, the radiation patterns becomes directive in nature and direction of lobes vary with changing biasing field.
- Array pattern comparison shows that on biasing, the radiation power is slightly increase on applying external biasing field.
- It is evident from the dispersion curve that, for the given parameters, the cut-off limit is between 1 GHz. to 2 GHz. and tunable resonant limit is about 2 GHz. to 10 GHz. This property of antenna shows its switchable and tunable capability which can be varied as per requirement.
- When the antenna is biased with DC magnetic field the parameters show that the directivity gain and radiation power are appreciably increase which enhances the scanning power as well as radiation power of array antenna.
- The size of patch is reduced considerable 35% comparable when designed on Quartz substrate. This reduction would certainly have a wide use in creating a miniaturization of an antenna system which has a potential application in space and cellular communication.

References