Abstract

Pulse Tube Refrigerator (PTR), a regenerative cryocooler is used in cryogenic cooling applications. Thermodynamic and numerical models help in estimating the operation parameters, analysing and thereby predicting the performance of a PTR. A one dimensional simulation model for analytical studies, design and optimization of the regenerator geometry for improving the performance of the PTR is developed. The simulation program is based on the equations obtained from applying the ideal gas laws, energy and mass balances in the orifice PTR (OPTR). Predictions by the simulation program of the thermodynamic performance are compared with published experimental results (Kral et al, 1992) to validate the program. At 274 K, the refrigerating effect predicted by the program is 12.689 W, whereas the experimental value is 11.57 W, a difference of around 9%. Conflicting requirements for regeneration are satisfied by selecting appropriate material and size of wire screen mesh type regenerator. Based on empirical understanding hybrid regenerators have been used instead of single mesh, showing improved performances. A mathematical model simulating the regenerator is developed and solved numerically. Unconstrained optimisation technique with univariate search method is adopted to design optimal hybrid regenerators and is integrated with the simulation program. Using a hybrid regenerator, instead of single mesh regenerator used in Kral’s experiments, the regenerator effectiveness increases by 0.16% and pressure drop decreases by 29.2% when compared to single mesh regenerators. Hybrid regenerators improve the refrigeration capacity of the OPTR system by as much as 40%. The validated simulation program can be used for the design and development of high performance OPTR.

Key words: Cryocooler; orifice pulse tube refrigerator; regenerator; simulation; refrigeration.

Nomenclature

A: Cross sectional area, m²; C: Coefficient; COP: Coefficient of Performance; L: Length; m: Massflow rate, kg s⁻¹; M: mass of gas in Moles; mho: mass of gas displaced; P: Pressure, Pa; Qref: Refrigerating effect; WR: Universal Gas constant, J/kmolK; T: Temperature, K; V: Volume, m³; W: Work done.

Greek

φ: crank angle rotation; γ: ratio of specific heats; τ: time instant

Subscripts

ci: clearance; ch: cold end heat exchanger; cpt: cold part of pulse tube; or: orifice
p: pressure; pt: gas already in pulse tube
pc: pre cooler; res: Reservoir; hhe: hot end heat exchanger; hpt: hot pulse tube end; mpt: mid volume of gas in pulse tube; v: flow; cyl: cylinder

Introduction

Cryogenic temperatures are required in a variety of applications in Infrared sensors for military and space, medical applications, transportation etc. These requirements have been attained with Cryogenic Refrigerators or Cryocoolers. Cryocoolers supply refrigeration with a working gas that goes through a specific thermodynamic cycle. Gifford McMohan, stirling and pulse tube refrigerators are the commonly used regenerative cycle Cryocoolers. At present pulse tube refrigerators compete with stirling and Gifford-McMahon coolers, both in terms of temperature range and efficiency. Pulse tube refrigerators have no moving parts in the low temperature region resulting in lower mechanical vibration, lower mass per capacity and thereby longer life compared to other coolers. However, its efficiencies have to improve above 20% of Carnot efficiency to be the preferred choice for applications in the 80K range. The performance of Pulse tube refrigerators has been greatly improved by innovative experimental design techniques like double-inlet design, inerter design, use of advanced regenerator materials, use of symmetry nozzle etc.

The theoretical developments lagged behind the experimental advances. To predict the performance of pulse-tube refrigerators different analytical and numerical models have been developed. Different simulation approaches which model the PTR with different levels of detail currently coexist. Thermodynamic models are time-averaged using the laws of thermodynamics to analyse and predict the performance of a pulse tube. For a more accurate prediction of pulse tube performance analysis of compressible oscillating gas flow using full time dependent models of fluid dynamics has been carried out. The system of conservation laws forms the basis of fluid dynamical models. Due to the complexity of the conservation equations, analytical solutions are essentially impossible. This is why numerical models are otherwise called Computational Fluid Dynamics (CFD) which has gained importance of late. The existing CFD models and solution methods are based on the coupled differential equations representing mass, momentum and energy conservation. They use one dimensional model and rely on the validity of empirical correlations for
computing flow friction and heat transfer. Multi-dimensional CFD models have also been used for accurate prediction of system behaviour. Even though these models are computationally intensive, the one dimensional model can still find periodic steady state solutions fast enough, that they are practical for numerical optimisation of machine designs. Thus a numerical model provides a powerful tool for estimating the parameters of cooling systems such as temperature, velocity, mass flow and enthalpy flow which leads to a deeper understanding of heat transfer and fluid-wall interaction in oscillating flow. Selecting appropriate mesh material and size has satisfied the conflicting requirements of a wire screen mesh regenerator used in PTR. Based on empirical understanding the hydraulic radius of mesh has been varied along the stack length, also called the hybrid regenerator and improved experimental performances have been reported. Analytical studies and design of optimal regenerator geometry for hybrid regenerators is lacking in the open published literature or in an accessible form. Proprietary considerations may be another reason for the same. The objective of the present work is a focus on development of a one dimensional simulation model of cyclic thermodynamic processes occurring in a PTR that will be useful for parametric analysis and design optimisation. A mathematical model of the OPTR is developed using the gas laws and thermodynamic equation. A control volume based approach for modelling oscillating compressible flow in one space dimension in the wire mesh type regenerator is presented. CFD analysis of the regenerator with a minimum of simplifying assumptions is conducted. The developed model is implemented and coded in a computer program for calculating the dynamic characteristics of the cooling system to predict its performance for given geometric parameters and operating conditions. The results are compared with published experimental data for validation. A design methodology for the optimization of hybrid regenerator is proposed. Selecting a combination of mesh sizes for hybrid regenerator to be used in OPTR, the lengths of individual mesh size are calculated confirming to physical constraints and the performance predicted. Analysis is carried out to study the effect of different mesh combinations on regenerator performance and the combination having optimal performance of the OPTR is identified. To model a pulse tube refrigerator, it is necessary to describe the physical model in which the gas flows and its behaviour with the components is derived in equation form.

Analysis of the OPTR

Attempts at analysis and simulation of the pulse tube refrigeration process have been made to design the OPTR for a given application by many researchers. Analyses of coolers have varied in their degree of complexity from simple calculations to nodal network analyses and detailed thermodynamic calculations. The models mainly used for the analysis and prediction of performance of pulse tube refrigerators are the phasor type, linear network type, one dimensional gas-dynamics type, CFD packages, thermodynamic equations, thermoacoustic model, empirical relations from experimental analyses etc. Some studies have also focused on the performance of regenerators under oscillating flow conditions. Gifford (Gifford & Longsworth, 1964) proposed that ‘heat surface pumping’ is responsible for the cold production, when others focused their study on the angle shift between pressure and gas velocity. Storch and Radebaugh (Radebaugh, 1990) used the method of enthalpy flow and phasor analysis to simulate, design and optimize a pulse tube refrigerator for a given application. Two models describing the behaviour of fluid in the OPTR have been developed: Analytical and Numerical. The analytical model is an adiabatic model, extending the Isothermal model (Zhu & Chen, 1994) which includes Volumes ‘hpt’ and ‘mpt’ of the pulse tube section and HHE if considered, leading to higher pressures in the system. Losses in the system are included and a numerical model of the regenerator is integrated to the OPTR simulation program to predict its actual performance. The numerical model concerns a one dimensional finite-difference solution scheme of the coupled differential equations representing mass, momentum and energy conservation with empirical correlations for computing flow friction and heat transfer.

©Indian Society for Education and Environment (iSee)
Adiabatic model

Developments in PTR's have gone through important stages of basic, orifice, inerterance, double inlet and multistage forms. The Basic PTR was discovered by Gifford and Longsworth in the early 1960s. In 1984, Mikulin (Radebaugh, 1990) introduced the Orifice type in which an orifice and a reservoir were added to the closed end of the basic pulse. The inerterance tube (a long and narrow tube replacing the orifice valve of OPTR, double inlet pulse tube refrigerator and multi-stage units achieved higher performance than the Basic PTR due to more favourable phase relationship between the oscillatory pressure and the mass flow rate. Interest in the OPTR, compared to the other types of PTR has grown rapidly since then due to its simplicity in construction, ease of manufacture and control and large refrigeration capacity. In the OPTR and other designs, the pressure heat pumping resulting from the proper phase angle between the pressure, temperature and mass flow rate is the major mechanism for energy transfer compared to the surface heat pumping (Radebaugh, 1990). The working process of an OPTR is very complex due to the oscillating gas and the addition of the orifice. The compression and expansion process of gas inside the pulse tube is similar to that in a Brayton cycle.

The compressor generates a pressure \(p \) in the system which varies sinusoidally with time. When the pressure in the pulse tube is greater than the pressure in reservoir, fluid from the compressor enters the pulse tube section through a precooler heat exchanger \('X_3' \) at temperature \(T_{hi} \) and a regenerator \('reg' \). The mass of gas coming into the pulse tube section from the cold heat exchanger (CHE) \('X_1' \) is at constant temperature \(T_L \). Assuming inviscid plug flow of gas inside the pulse tube, the gas may be divided into 3 sections, 'cpt', 'mpt' and 'hpt'. Volume 'hpt' flows into and out of the hot heat exchanger (HHE), \(X_3 \). Volume 'cpt' flows into and out of the pulse tube through the regenerator, \('reg' \) and volume 'mpt' never leaves the pulse tube, moving up and down the tube as the pressure fluctuates. Gas 'cpt' entering the tube through the reg, compresses the already present gas 'mpt' and 'hpt' in the tube thus doing work on it. Each volume is supposed to take account of several complex processes actually acting in the tube: heat exchange in the associated heat exchanger, surface heat pumping in the tube and mixing phenomena for the gas. The cooling at \(X_3 \) takes place due to the fact that the gas leaves the CHE to the right with a temperature \(T_L \) and comes back with a temperature lower than \(T_L \). The cooling capacity of a pulse tube is limited by the amount of heat that can be pumped to \(X_3 \). The phase angle between the cyclic variation in pressure and velocity is the controlling factor of heat pumping. For sinusoidal pressure variations the heat pumping effect should be a maximum when pressure and velocity are in phase and a minimum when the phase angle between them is 90°. In the OPTR the correct phase relationship is achieved by adjusting the orifice 'O', impedance and reservoir 'res' volume.

In the present model, the volume of gas in the pulse tube and HHE is included in the calculation of instantaneous pressure for each step of crank rotation. The volume variations in the cylinder are assumed to be sinusoidal. The temperature profile of the gas in the components of OPTR is obtained from the ideal gas laws. The work done and cooling capacity is calculated based on the P-V diagram area of the cylinder and the 'cpt' volume of the pulse tube. The losses are evaluated to obtain the actual cooling capacity and network done.

The assumptions to simplify the mathematical model of the OPTR and justifications for them are as follows:

1. The model is one dimensional which finds periodic steady state solutions fast and is practical for numerical optimisation of OPTR design.
2. Working fluid is an ideal gas undergoing inviscid plug flow as it is compressed or expanded in the pulse Tube.
3. Frequency of operation of the OPTR is high enough to assume non-mixing of the incoming fluid with the fluid already present in the pulse tube.
4. Compression and expansion processes in the pulse tube are adiabatic.

When the gas is compressed, if the process is to be isothermal, it should reject all the heat equal to the work done during compression. As the frequencies of oscillating fluid are high, the heat transfer is not complete. As the gas will do work as it expands, Isothermal expansion implies energy supply from an external source. The pulse tube being insulated during its operation, the compression and expansion are not isothermal as assumed by Zhu (Zhu and Chen, 1994).

5. The volume variation in the cylinder is sinusoidal. The piston movement inside the cylinder is harmonic, the sinusoidal motion equation describes volume variation more realistically.
6. The internal volumes of precooler, regenerator, CHE and HHE are assumed to be negligible. Fluid hold up in the void spaces affects performance but due to oscillatory flow, the effect on heat transfer can be neglected.
7. The initial individual volumes of gas in the pulse tube, 'cpt', 'mpt' and 'hpt' are assumed based on empirical data. As the temperature of gas inside the pulse tube varies from the ambient temperature in the hot end to cryogenic temperatures in the cold end of the tube, the volumes are divided into 3 and temperatures assumed for these volumes.

During a cycle of operation, the pressure is assumed to be uniform throughout the system at a given instant. This assumption hold good if the pressure drop is uniform and frequency of operation is low.

9. Reduction in volume due to cooling of fluid in the HHE is not taken into account. This assumption reduces the complexity of modelling.

8. The precooler, CHE and HHE are ideal. Due to small volumes compared to gas in the other components, the
temperatures of gas inside the heat exchangers are assumed to be isothermal.

Cyclic analysis

The piston is initially assumed to be at its extreme position before start of compression. The piston movement is divided into step movements corresponding to particular crank rotation angle, during its rotation of 360° for a cycle period. The pressure in the system during each step of the cycle is calculated based on the assumed volume variations of the fluid in the cylinder. The compressor volume at any crank angle for the given interval is given by:

\[P(q) = \frac{V_{cyl}(q)}{T_{cyl}(q)} + \frac{V_{pc}}{T_{pc}} + \frac{V_{che}}{T_{che}} + \frac{V_{cpt}(q)}{T_{cpt}(q)} + \frac{V_{mpt}(q)}{T_{mpt}(q)} + \frac{V_{hpt}(q)}{T_{hpt}} + \frac{V_{hhe}(q)}{T_{hhe}} \]

The gas element undergoes isentropic compression and expansion in the compressor and pulse tube, isothermal compression in the precoolers, hot end heat exchanger and regenerator. With an assumed increase in pressure \(\Delta P \) in the OPTR, the temperature and volume of gas undergoing adiabatic process in the \(i \)th component at immediate ‘q’ is evaluated from the ideal gas laws. Due to assumption ‘6’ the precoolers, CHE and HHE are at their respective isothermal temperatures. The regenerator temperature is the log mean temperature of cold end heat exchanger and precooler temperature.

The mass flow rate at HHE is

\[m_{hhe} = m_{or} + \frac{V_{hhe}}{RT_{hhe}} \frac{dp}{d\tau} \]

where \(m_{hhe} \) is the mass of gas displaced if there was no flow through the orifice. The volume of gas ‘hpt’ is calculated from the above equation as:

\[m_{hpt} = m_{hhe} + \int_{0}^{t} (- \dot{m}_{hhe}) dt \]

The volume of gas ‘mpt’ is calculated from the volume at the previous instant. The temperatures in each section of the OPTR are similarly calculated. The pressure in the system will be due to the cycle carried out by the total enclosed gas. At steady state operation of the system, the pressure is expressed using the ideal gas law as:

\[P = \frac{mRT}{V} \]

where \(V \) and \(T \) is the volume and temperature of the gas in the respective components of the OPTR at instant ‘q’. The product of the total mass of gas in Moles ‘M’ and the Universal Gas Constant ‘R’ is assumed to be a constant, as the exact value of \(M \) is not known. As \(P(q) \) occurs in both the LHS and RHS of eqn. 7, it is calculated by the Newton-Raphson method. The pressures are then calculated for the complete cycle based on the interval chosen. The pressure and temperature at the last interval should be equal to the pressure and temperature at the start of the cycle within a tolerance limit. If not, the calculation of pressure restarts with a new value of initial pressure and temperature. The mean pressure would be equal to \(P_{avg} = \frac{P_{total}}{1} \) where \(P_{total} = \sum P(q) \). The actual value of MR is calculated from the value of \(P_{mean} \) and the average pressure of the gas \(P_{avg} \). The ratio of \(P_{avg} \) to \(P_{mean} \) is the correct fraction of MR in the system. With this new value of MR all the pressure values calculated from eqns. 3, 6 for each interval have to be multiplied so that \(P_{mean} \) matches \(P_{avg} \). The mass flow rates in each component of the system are calculated. The product of instantaneous pressures at each interval ‘q’ and the displaced volume of the cylinder and cpt part of the pulse tube volume will determine the net ideal work input and the refrigerating effect for 1 cycle. The input power and refrigeration effect is due to the working fluid displacement in cylinder and the cold part of pulse tube respectively.

\[W = \int_{0}^{t} PdV_{cyl} \]

The integration is carried out using trapezoidal rule. According to this rule the pressure \(P \) is the average pressure of the interval point pressures. The above eqns.
are multiplied with frequency to obtain the total work input and refrigerating effect.

Losses in PTR

The losses in an OPTR are due to:
1. Incomplete thermal energy exchange between the fluid and matrix.
2. Frictional pressure drops in fluid.
3. Conduction loss in regenerator tube, pulse tube wall and matrix.
4. Temperature swing loss due to finite heat capacity of the regenerator.
5. Pressure drop through the pulse tube, precooler and HHE.

These are evaluated to obtain the actual cooling capacity of the OPTR. The increase in power requirement for the pulse tube refrigerator is due to pressure drop due to fluid friction in the regenerator, precooler, CHE, pulse tube and HHE sections and Mechanical Losses. The mathematical model is simulated in a computer program programmed in QUICK BASIC, the flowchart of which is shown in Fig. 8.

Regenerator

The conflicting requirements for regeneration in an OPTR have been satisfied by selecting appropriate mesh material and size. A CFD analysis of mesh type regenerator in an OPTR for evaluating its performance is presented.

Regenerator simulation

To develop the mathematical model describing the exchange, the energy balance for the matrix material and working fluid in a control volume of the regenerator is established by employing the 1st law of Thermodynamics, conservation of mass, momentum and heat transfer equation of fluid with matrix. To develop the mathematical model describing the exchange, the energy balance for the matrix material and fluid in a small element or control volume of the regenerator is established by employing the 1st law of Thermodynamics, conservation of mass, heat transfer equation and the equation of motion of fluid. The overall balance for the control volume is written in mathematical form and the energy balance for the fluid in the control volume is derived. The developed eqns. are complex, hence to obtain solutions the equations are simplified using suitable assumptions (Heggs, 1991) to obtain

\[U \frac{\partial T_f}{\partial z} + \frac{dT_m}{dt} = 0 \]

Numerical scheme

The Λ-Π technique in modified form is used to solve the differential equations by converting them to algebraic eqns. by the explicit form of finite difference technique (Heggs, 1991). The solution procedure starts with the non-dimensionalising the system of eqns. Normalised independent variables and temperatures are defined as follows:

- Normalised length \(y = z / L \)
- Normalised period \(q = (1 - z / u) / P \)
- Normalised temperature \(\theta (y, q) = T_j (y, q) - T_{2,in} / (T_{1,in} - T_{2,in}) \), where \(j = 1, 2, m \)

After normalising, Eqn. 9 becomes

\[U \frac{\partial \theta_f}{\partial y} + \frac{\partial \theta_m}{\partial q} = 0 \]

The time and length derivative in the first normalised Eqn. 10 is replaced by a central difference approximation about nodal point \((n+1/2, i)\) to obtain the following algebraic equations (Heggs, 1991).

\[\theta_m (n + 1, i) = k_1 \theta_m (n + 1, i - 1) + k_2 \theta_m (n, i) + k_3 \partial_f (n + 1, i, i - 1) + k_4 \theta_f (n, i) = 0 \]

where

\[A_1 = 2 - \Lambda \theta_f (y, q) \] \(\Lambda = \Lambda \theta_m (y, q) \)

The 2nd eqn. i.e. the fluid balance eqn. 10 is converted into an algebraic equation by replacing the length derivative by a central difference derivative approximation about the nodal points \((n+1, i-1/2)\) to give

\[\theta_m (n + 1, i - 1) - B_2 \left(\theta_m (n + 1, i) + \theta_m (n, i - 1) \right) = 0 \]

\[\theta_m (n + 1, i) - A_1 \theta_m (n, i) - A_2 \left(\theta_f (n + 1, i) + \theta_f (n, i) \right) = 0 \]

The matrix temperature is obtained from substituting Eqn. 12 in Eqn.11 to give (Heggs, 1991)

Solution procedure

The numerical solution procedure is as given below:

a. Dimensionless time and space coordinates \(z \) and \(q \) are represented by a system of nodal points on a mesh arrangement of size \(z \) and \(q \). Each nodal point may be signified by the notation \((n, i)\) where \(n = \) time step and \(i = \) length step. The number of time and length step depends on the stability criteria. The
numerical solution will find both gas and solid temperatures at each nodal point in the mesh covering the time and space domain.

b. The pulse tube refrigerator system configuration and its operating conditions are specified.

c. The boundary conditions of the regenerator is assigned

d. The empirical formula of heat transfer and fluid flow friction factors are applied for a particular node with the fluid and matrix properties taken for temperature at that node.

e. The temperature of matrix and fluid at each node is calculated after 1 time step given the condition at the beginning of that time step. At any given instant having known the temperatures at (2,1), (1,1), (1,2) the temperature at 2,2 can be found.

f. Step ‘e’ is continued for the entire length of the regenerator till the final time step for the compression half cycle or the hot cycle.

g. The process is repeated for the cold period of the cycle. The temperature profile at the end of the hot period is taken as the profile at the beginning of the cold period. The constant for Eqn. 9 is changed to account for the unbalance factor and non symmetry factor.

h. The time step calculations are continued for several cycles of flow of fluid until quasi steady state is reached, when the difference in temperature at each node between 2 cycles is less than a given tolerance. Convergence to cyclic equilibrium is checked after the evaluation of a complete cycle.

i. The effectiveness and losses in the regenerator is calculated. The losses are given in detail in the next section. The effectiveness is given by the dimensionless fluid temperature at the exit of the matrix

\[\varepsilon = \frac{T_{g.h.in} - T_{g,h.out}}{T_{g,h.in} - T_{g,c.in}} \]

---14

j. The temperature profile and performance parameters for given input conditions are printed for the regenerator. **Losses in a regenerator** Losses in the regenerator influence the performance by increasing the net power input and decreasing the refrigerating capacity of the system. The decrease in refrigerating capacity is due to regenerator ineffectiveness, irrecoverable pressure, drop longitudinal conduction through the matrix, regenerator tube. The following correlations are compiled from the literature based on system similarity and computational ease. Fluid flow in the regenerator of a PTR is accompanied by significant pressure change. The irrecoverable pressure drop through a regenerator matrix is obtained from

\[\Delta P = n_m f (1/2) v_r^2 \rho \]

---15

\(v_r \) is the mean velocity of the fluid flowing through the regenerator with density \(\rho \) through the regenerator and \(n_m \) is the number of mesh punching n the regenerator. \(f \) is the friction factor obtained from experimental pressure drop data for steady unidirectional flow through screen matrices where \(N_m \) is the Reynolds number.

\[f = \frac{33.6}{N_{Re}} + 0.337 \]

---16

The longitudinal conduction through the regenerator holding tube is

\[Q_{ct} = k_r A_r (T_h - T_c) (1 - \varepsilon) \]

---17

A similar eqn. calculates the longitudinal conduction loss in the pulse tube wall. Similarly the longitudinal heat transfer along the regenerator matrix is

\[Q_{cm} = \frac{k_m A_m (T_h - T_c)}{L_i} \]

---18

The equivalent longitudinal thermal conductivity of the matrix \(k_{eq} \) depends on the method of stacking and on the contact resistance between adjacent stacks. Martini has used the Gorring eqn. which does not take into account the contact resistance.

\[k_{eq} = k_f \left(\frac{1 + \frac{k_m}{k_f}}{1 - \frac{k_m}{k_f}} \right) + k_f \left(\frac{1 + \frac{k_m}{k_f}}{1 - \frac{k_m}{k_f}} \right) \]

---19

Where \(k_f \) is the fill factor, the fraction of regenerator holding volume filled with solid, \(k_m \) and \(k_f \) are the thermal conductivities of the matrix and the fluid. The equivalent cross sectional area for the heat conduction transfer is

\[A_{eq} = F (1 - por) A_r \]

---20

The reheat loss associated with the ineffectiveness of the regenerator. Owing to the incomplete heat exchange between the gas stream and regenerator matrix, gas will arrive at the cold end at a higher temperature than the cold end matrix temperature during the inlet process. It is given by

\[Q_{r.i} = n_i c_v (T_h - T_c) (1 - \varepsilon) \]

---21

The equations derived for giving the variation in the fluid and matrix material properties as function of pressure and temperature is included in the calculation of pressure drop and heat transfer coefficients at each node along the regenerator in the numerical solution. The flowchart of the simulation of regenerator, developed as a computer program is given in Fig. 9. This program is integrated with the PTR system program to simulate an actual OPTR. An optimum regenerator is one for which the combined losses due hydrodynamic pumping and imperfect heat exchange at given operating conditions are a minimum. This optimum regenerator would have a continuous variation in hydraulic diameter (Andeen, 1982).
Refrigerating effect, W
Compressor volume, m$^3 \times 10^6$

Table 1. Configuration of OPTR input to the Simulation program

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor</td>
<td>10 cm3; 0-2.1, MPa Pressure range, 0-30 Hz. Frequency range</td>
<td>16 cm3</td>
</tr>
<tr>
<td>After Cooler</td>
<td>1.27 cm ID; 1.27 cm length</td>
<td>Cold-end exchanger (screen mesh/no. disks/length): 100/20/30 mm; diameter = 2 mm</td>
</tr>
<tr>
<td>Regenerator, SS</td>
<td>1.27 cm OD; 1.17 cm ID; 10.3 cm length, filled with 1075 nos. 400 mesh SS316</td>
<td>9.3 mm OD; 9 mm ID; 110 mm long; 400 mesh-180 disks; 200 mesh-700 disks; 150 mesh-400 disks</td>
</tr>
<tr>
<td>Cold Heat Exchanger</td>
<td>0.826 cm ID, 1.52 cm length, filled with 40 numbers 100 mesh copper screen discs, resistance wire wound heater for cooling load</td>
<td>Cold-end exchanger (screen mesh/no. disks/length): 100/20/30 mm; diameter = 2 mm</td>
</tr>
<tr>
<td>Pulse Tube</td>
<td>S.S. 316; 0.794 cm OD, 0.743 cm ID; 5.08 cm length</td>
<td>8.9 mm ID; 90 mm Length</td>
</tr>
<tr>
<td>Hot Heat Exchanger</td>
<td>0.826 cm ID, 0.762 cm length, filled with pressed copper ribbon, water cooled</td>
<td>Hot-end exchanger (screen mesh/no. disks): 100/20; air cooling at hot end</td>
</tr>
<tr>
<td>Orifice</td>
<td>Whitey valve SS-22RS4 with vernier handle; Area 0.32 mm2</td>
<td>Needle Valve SS-22RS2; Area 0.142 mm2</td>
</tr>
<tr>
<td>Ballast</td>
<td>Diameter 5.08 cm; 21.1 cm length</td>
<td>Diameter = 80 cm3</td>
</tr>
<tr>
<td>Refrigerant</td>
<td>Helium</td>
<td>Helium</td>
</tr>
<tr>
<td>Operating Parameters</td>
<td>Charge Pressure - 17.5 kg/cm2; Frequency - 13 Hz.</td>
<td>Charge Pressure - 15 bar; Frequency - 7 Hz.</td>
</tr>
</tbody>
</table>

Table 2. Performance parameters predicted at varying $T_{\text{cold end}}$ for an OPTR using the configuration of Kral et al. (1992)

<table>
<thead>
<tr>
<th>Cold end Temp. K</th>
<th>Predicted Results</th>
<th>Kral’s Expt., W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Q_{\text{refrigeration}}$, W</td>
<td>Q_{loss}, W</td>
</tr>
<tr>
<td>90</td>
<td>1.543</td>
<td>6.993</td>
</tr>
<tr>
<td>102</td>
<td>6.431</td>
<td>4.722</td>
</tr>
<tr>
<td>115</td>
<td>6.644</td>
<td>4.172</td>
</tr>
<tr>
<td>162</td>
<td>8.591</td>
<td>2.641</td>
</tr>
<tr>
<td>185.7</td>
<td>9.188</td>
<td>0.777</td>
</tr>
<tr>
<td>227.14</td>
<td>11.527</td>
<td>0.345</td>
</tr>
<tr>
<td>240</td>
<td>11.87</td>
<td>0.291</td>
</tr>
<tr>
<td>274</td>
<td>12.837</td>
<td>0.147</td>
</tr>
</tbody>
</table>

Table 3. Performance parameters predicted at varying $T_{\text{cold end}}$ for an OPTR using configuration of Huang & Yu (2001)

<table>
<thead>
<tr>
<th>Cold end Temp. K</th>
<th>Predicted Results</th>
<th>Huang & Yu Expt., W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$Q_{\text{refrigeration}}$, W</td>
<td>Q_{loss}, W</td>
</tr>
<tr>
<td>95</td>
<td>6.346</td>
<td>5.822</td>
</tr>
<tr>
<td>101</td>
<td>6.949</td>
<td>5.742</td>
</tr>
<tr>
<td>109</td>
<td>6.938</td>
<td>5.565</td>
</tr>
<tr>
<td>118</td>
<td>6.965</td>
<td>5.366</td>
</tr>
<tr>
<td>125</td>
<td>7.274</td>
<td>5.175</td>
</tr>
<tr>
<td>132</td>
<td>7.534</td>
<td>5.020</td>
</tr>
<tr>
<td>139</td>
<td>8.214</td>
<td>4.837</td>
</tr>
<tr>
<td>95</td>
<td>6.346</td>
<td>5.822</td>
</tr>
</tbody>
</table>

Fig. 1. Schematic of an Orifice type Pulse Tube Refrigerator

Fig. 2. Pressure variations in the system & Compressor volume variations for one cycle at 274 K in Kral’s OPTR

Fig. 3. P-V diagram for expansion of cpt volume at 274 K of Kral’s OPTR

Fig. 4. Predicted performance compared with the published experimental results of Kral’s OPTR (Kral et al., 1992)
Table 4. Regenerator Performance predicted for the 150-200-400 mesh combination for an OPTR using the configuration of Huang and Yu (2001)

<table>
<thead>
<tr>
<th>Mesh Length in mm:</th>
<th>Actual stacked length</th>
<th>Theoretical stacked length</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.64-56.84-9.144</td>
<td>44.01-56.84-9.144</td>
<td></td>
</tr>
<tr>
<td>Total Length:</td>
<td>106.64 mm</td>
<td>110 mm</td>
</tr>
<tr>
<td>Effectiveness:</td>
<td>0.4115</td>
<td>0.4214</td>
</tr>
<tr>
<td>Pressure Drop:</td>
<td>0.117997 bar</td>
<td>0.11670 bar</td>
</tr>
<tr>
<td>Refrigerating Effect in the Refrigerator</td>
<td>0.524 W</td>
<td>0.744 W</td>
</tr>
</tbody>
</table>

Table 5. Performance of Hybrid Regenerator Combination in Huang and Yu’s OPTR

<table>
<thead>
<tr>
<th>Combination Length (mm) 150-200-400</th>
<th>Effective</th>
<th>Pressure drop, bar</th>
<th>Refrigerating Effect, W</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/70.14 /29.85</td>
<td>0.4278</td>
<td>0.14725</td>
<td>0.973</td>
</tr>
<tr>
<td>20/57.74 /32.25</td>
<td>0.4269</td>
<td>0.15051</td>
<td>0.979</td>
</tr>
<tr>
<td>44/27.98 /38.01</td>
<td>0.4160</td>
<td>0.15135</td>
<td>0.911</td>
</tr>
<tr>
<td>60/8.14 /41.85</td>
<td>0.4024</td>
<td>0.15361</td>
<td>0.759</td>
</tr>
</tbody>
</table>

Table 6. 400 Mesh Regenerator Performance predicted by the computer program

<table>
<thead>
<tr>
<th>Input Conditions</th>
<th>Performance parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold End Temp. 80 K</td>
<td>Effectiveness 0.9907</td>
</tr>
<tr>
<td>Warm end Temp. 293 K</td>
<td>Conduction loss in Matrix 0.0129W</td>
</tr>
<tr>
<td>Charge Pressure 16.5 bar</td>
<td>Conduction Loss Regenerator tube 0.478 W</td>
</tr>
<tr>
<td>Length of Regenerator 103 mm</td>
<td>Conduction loss in Pulse tube 0.312 W</td>
</tr>
<tr>
<td>Mesh size 400 Mesh</td>
<td>Reheat loss in Matrix 0.0286 W</td>
</tr>
<tr>
<td>Diameter of Regenerator 11.7 mm</td>
<td>Pressure drop during Compression 0.1268 bar</td>
</tr>
<tr>
<td>Material Stainless Steel</td>
<td>Expansion 0.1699 bar</td>
</tr>
</tbody>
</table>

Table 7. Hybrid Regenerator Performance predicted by the computer program

<table>
<thead>
<tr>
<th>Input Conditions</th>
<th>Performance parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold End Temp. 80 K</td>
<td>Effectiveness 0.9923</td>
</tr>
<tr>
<td>Warm end Temp. 293 K</td>
<td>Conduction loss in Matrix 0.019 W</td>
</tr>
<tr>
<td>Charge Pressure 16.5 bar</td>
<td>Conduction Loss, regenerator tube 0.478 W</td>
</tr>
<tr>
<td>Length of Regenerator 103 mm</td>
<td>Conduction loss, Pulse tube 0.311 W</td>
</tr>
<tr>
<td>Mesh size 250-300-400 Mesh</td>
<td>Reheat loss in Matrix 0.028 W</td>
</tr>
<tr>
<td>Diameter of Regenerator 11.7 mm</td>
<td>Pressure drop during Compression 0.0897 bar</td>
</tr>
<tr>
<td>Material Stainless Steel</td>
<td>Expansion 0.1172 bar</td>
</tr>
</tbody>
</table>
Hybrid regenerator
Based on empirical understanding the hydraulic radius of mesh called a Hybrid regenerator has been varied along the stack length and improved performances have been reported (Andeen, 1982). The design principle and optimisation for a hybrid regenerator in an OPTR is also discussed. The hybrid regenerator concept is analyzed and a computer coded search is carried out. The unconstrained optimization technique of iterative trial solution proceeding towards optimum point in a sequential manner is adopted. The length of mesh size combination having a minimum of total losses is selected in an iterative process.

Fig. 8. Flowchart for the Simulation of Orifice Pulse Tube Refrigerator
Optimisation

It is the process of finding the conditions that give the maximum or minimum value of a function called the objective function. The objective functions in the present case are minimum pressure drop of the fluid flowing through the regenerator and maximum effectiveness of the regenerator. The objective functions are controlled by the geometrical factors and material of the regenerator matrix. The geometric factors of the matrix are the mesh size and volume of the respective size matrix which in combination can give the maximum effectiveness and simultaneously a minimum pressure drop. Many volume and thereby length combinations for a given area of mesh sizes are possible and a methodology is proposed to generate the length of mesh combinations confirming to the physical and geometrical constraints.

Fig. 9. Flowchart for the simulation program of single mesh regenerator

Optimisation technique

The losses in refrigeration capacity and work done are dependent on the pressure drop through the regenerator volume. A given regenerator volume can be obtained from numerous length combinations of mesh sizes. Also, if 3 mesh size zones are taken to constitute the regenerator, then the meshes have to be suitably arranged within the regenerator space in the system. The commonly available mesh sizes in the market and which satisfy the heat transfer between the fluid and matrix are 150, 200, 250, 300 and 400. Each of these mesh sizes have 2 or 3 types of wire diameters. Thus the selection of combination of mesh size and wire diameter for complete heat transfer between fluid and matrix has a large number of possibilities. As there is no constraint over the regenerator mesh geometry, the optimisation problem can be solved through unconstrained optimisation technique. This method is iterative in nature and starts with a trial solution and proceeds towards the optimum point in a sequential manner. The search for an optimum point may be a direct search method or descent method.

Descent techniques require in addition to an objective function, the derivatives of the function. As the dependent variables in the geometry of the regenerator are many for a given independent variable, the descent method will lead to mathematical complexity. Hence a direct search method is adopted in the present work. In the direct search method, the univariate method of search, wherein 1 variable is changed at a time and a sequence of improved performance are sought to arrive at the optimum point. As the function to be optimised, minimum pressure drop and maximum effectiveness of regenerator are not a directly available function in terms of the mesh size, mesh wire diameter and volume to be optimised, other methods of optimisation cannot be applied.

Hence the optimisation method adopted in the present analysis is the univariate method of search in the unconstrained optimisation technique. 3 mesh size zones are taken to constitute the regenerator volume and the meshes are to be suitably arranged within the regenerator. The design methodology for the 3 zone matrix is as follows:-

a. Total Length of the regenerator
L₁ + L₂ + L₃ = t₁ ----12
where L₁, L₂, and L₃ are the individual lengths of the 3 meshes.

b. Volume of the Regenerator meshes
The regenerator void volume of the meshes should be equal to the total regenerator void volume.
Vᵣ₁ + Vᵣ₂ + Vᵣ₃ = Vᵣ and por₁ L₁ + por₂ L₂ + por₃ L₃ = Vᵣ / Aᵣ ----13
The void volume of the regenerator Vᵣ, total length of the regenerator t₁, regenerator frontal area Aᵣ, are design parameters obtained from the system optimisation. As there are 3 unknowns and 2 eqns., 1 unknown L₁ is assumed and the other 2 L₂ and L₃ are calculated.
c. Equations are written in matrix form $AX = C$, where A is the coefficient matrix, X is the unknown matrix and C is the constant matrix. The solution of X is obtained by Cramer's rule $X = A^{-1}C$. A^{-1} is the inverse of matrix A and is obtained by Gauss-Jordan rule.

Results

Configuration of orifice pulse tube refrigerators published in the open literature along with their experimental results is taken as reference and input into the simulation program. The performances of the OPTR's predicted by the program are compared with the published experimental results for validation.

Pulse tube refrigerator

The specifications of OPTR developed by Kral (Kral et al., 1992) and Huang (Huang & Yu, 2001) are given in Table 1. These specifications are input into the computer program and performance parameters are predicted. The pressure variations, given in eqn. 7, in the system during each step of the 360° crank rotation in the cycle based on the assumed volume variations given in eqn. 1 of the fluid in the cylinder is shown in Fig. 2. The refrigeration effect due to the working fluid displacement in the cold part of the pulse tube as given in eqn. 8 for 274K cold heat exchanger temperature is shown in Fig. 3. The area of the $P-V_{opt}$ diagram gives the ideal refrigeration effect for 1 cycle. This is multiplied with frequency to give the gross refrigeration effect. The losses in the OPTR system, enumerated are calculated and deducted for the gross refrigeration effect to obtain the actual refrigeration effect and listed in Table 2 for each CHE temperature. The performance parameters with Kral’s experimental setup configuration as input, for various cold end temperatures are given in Table 2. The predicted refrigeration effect drawn as a polynomial is compared with experimental results of Kral (Kral et al., 1992) and shown in Fig. 4. At 274 K the refrigerating effect of the program is 12.689 W, whereas the actual experimental result is 11.57 W, a difference of 8.5%.

Similarly, an OPTR developed by Huang (Huang and Yu, 2001) is given in 3rd column of Table 1 and input into the simulation program to validate the mathematical model developed. The output of the program for various cold end temperatures is given in Table 3. The predicted refrigerating effect, drawn as a polynomial is compared with experimental results of Huang (Huang and Yu, 2001) is shown in Fig. 5. At 139K the refrigerating effect predicted by the program is 3.378 W, whereas the actual experimental result is 3 W, a difference of 11.2%. As the difference between the predicted and actual experimental results is less than 12%, the program is validated. Hence, the program developed based on the model described will be used in optimizing in existing systems and developing new OPTR for a given application.

Regenerator performance

The regenerator meshes in the OPTR’s of Huang (Huang and Yu, 2001) and Kral (Kral et al., 1992) are analysed for its performance and losses behaviour.
regenerator is replaced by inserting a hybrid regenerator in the Kral's OPTR system.

Hybrid regenerator

The performance with the length of 250 Mesh size varying from 10 mm to 80 mm in the combination is tabulated in Table 8. Lengths for 250-300-400 mesh combinations are calculated and performance predicted for each combination. The maximum effectiveness is for the 20/78.08/4.9 mm mesh combination. The pressure drop decreases as the length of the 250 Mesh is increased. A suitable mesh size combination could be chosen depending on the system requirements. The performance parameters for a 250-300-400 mesh size combination with lengths of 20-78.08-4.91 mm respectively are given in Table 7. The losses are plotted in Fig. 7 for the above combination of meshes. Regenerator effectiveness has increased by 0.16% and pressure drop during compression stroke has decreased by 29.2% when compared to the 400 mesh regenerator. The regenerator ineffectiveness is low at the entry and hence a still lower mesh size can be selected for the given operating conditions instead of the 250 mesh. Thus, hence a still lower mesh size can be selected for the

Consequently, a lower pressure drop, the higher losses due to conduction and reheat loss leads to lower refrigeration effect. Similarly, the performance of combination of meshes in kral's OPTR configuration with the length of 250 mesh size varying from 10 mm to 80 mm inside the regenerator tube are calculated and found that the maximum effectiveness of 0.9923 is for the 20/78.08/4.9 mm mesh combination. For a hybrid regenerator of 250-300-400 mesh combination with lengths 20-78.086-4.913 mm respectively, the effectiveness is 0.9923 for a pressure drop of 0.0897 bar. The regenerator effectiveness has increased by 0.16% and the pressure drop during compression has decreased by 29.2% when compared to the 400 mesh regenerator.

Conclusion

A validated mathematical model, which can be used to simulate, design and optimize an OPTR for a given application is developed. As the difference between the predicted and actual experimental results is less 8.5% and 12% for kral's and Huang and Yu's configuration respectively, the program is validated.

Performances predicted by the simulation program for the single mesh regenerator and a Hybrid regenerator (if inserted instead of a single mesh) for Kral's OPTR under specific operating conditions are obtained. The regenerator effectiveness has increased by 0.16% and the pressure drop during compression has decreased by 29.2% when compared to the single mesh (400 Mesh) regenerator. The performance of Hybrid regenerator with the length of 250 mesh size varying from 10 mm to 80 mm indicates that the maximum effectiveness of 0.9923 is for the 20/78.08/4.9 mm mesh combination. Hybrid Regenerators improves the refrigeration capacity of the OPTR system by as much as 40%. Thus, the computer program can be used for the design of optr with hybrid regenerators for a given application.

References