Abstract
In this paper we give new results on the best coapproximation in the Hausdorff topological vector space X. Assume that f be a real valued function on X and we present some results regarding f-best coapproximation. We determine under what conditions f-coproximinality can be transmitted to the quotient spaces and conversely.

2010 Mathematics Subject Classification: 41A52, 57N17.

Keywords: f-best Coapproximation, f-coChebyshev, f-compact, f-quasi-coChebychev

1. Introduction
The notion of f-best approximation in a vector space X was given by Breckner and Brosowski. A few years later, T. D. Narang introduced the notions of f-best approximation and f-best coapproximation in a Hausdorff topological space. Recently the author in obtained some properties of f-best approximation sets in quotient spaces. In this paper we develop the theory of f-best coapproximation in quotient topological vector spaces. We want to determine under what conditions f-coproximinality can be transmitted to the quotient spaces and conversely.

Let X be a Hausdorff topological vector space over \mathbb{R} and f a real valued function. Let K be a nonempty closed subset of X and $x \in X$. Element $k_0 \in K$ is said to be an f-best approximation to x in K if

$$f(x - k_0) = \inf\{f(x - k) : k \in K\}.$$

Furthermore, element $k_0 \in K$ is said to be an f-best coapproximation to x in K if

$$f(k - k_0) \leq f(x - k)$$

for all $k \in K$. We denote by $K_f^f(x)$ the collection of all such $k_0 \in K$. The set K is said to be f-coproximinal if $K_f^f(x)$ is nonempty for each $x \in X$, and f-coChebysev if $K_f^f(x)$ is exactly singleton for each $x \in X$.

Putting

$$K_f^f = \{x \in X : f(k) \leq f(x - k) \text{ for all } k \in K\} = \left(K_f^f \right)^{-1}([0]).$$

It is clear that $k_0 \in K_f^f(x)$ if and only if $x - k_0 \in K_f^f$.

A subset K of X is called f-compact if every sequence $\{k_n\}$ in K has a subsequence $\{k_{n_i}\}$ of $\{k_n\}$ and $k_0 \in K$ such that $f(k_{n_i} - k_0) \to 0$. K is called f-quasi-coChebysev if $K_f^f(x)$ is nonempty and f-compact set in X for every $x \in X$.

A function $f : X \to \mathbb{R}$ is absolutely homogeneous if $f(\alpha x) = |\alpha| f(x)$ for all $\alpha \in \mathbb{R}$ and $x \in X$.

When X is a normed linear space over the filed of real numbers and $f(x, y) = \|x - y\|$ for all $x, y \in X$, the notions introduced above coincide with the corresponding notions that already exists in literature.

2. Set of f-Coapproximations
In this section, we give some characterizations of f-coproximinal sets in X.

Theorem 1
Let X be a topological vector space and f be a real valued function.
If K is a subset of X, then

1. $R_{K+x+y}^f(x+y) = R_{K}^f(x) + y$ for all $x, y \in X$.
2. K is f-coproximinal (f-coChebyshev) if and only if $K + y$ is f-coproximinal (f-coChebyshev) for every $y \in X$. Furthermore if f is absolutely homogeneous, then
3. $R_{K}^f(\alpha x) = |\alpha| R_{K}^f(x)$ for all $x \in X$ and $\alpha \in \mathbb{R}$.
4. K is f-coproximinal (f-coChebyshev) if and only if αK is f-coproximinal (f-coChebyshev) for all $\alpha \in \mathbb{R}$.

Proof:

(1) $k_0 + y \in R_{K+x+y}^f(x+y)$ if and only if $f(k_0 + y - (k + y)) \leq f(x + y - (k + y))$ for all $k \in K$, if and only if $f(k_0 - k) \leq f(x - k)$ for all $k \in K$, if and only if $k_0 \in R_{K}^f(x)$. Thus

$$R_{K+x+y}^f(x+y) = R_{K}^f(x) + y.$$

(2) It is clear by (2).

(3) If $\alpha = 0$, the result is true. Thus assume that $\alpha \neq 0$.

$k_0 \in R_{\alpha K}^f(\alpha x)$ if and only if $k_0 \in \alpha K$ and $f(k_0 - \alpha k) \leq f(\alpha x - \alpha k)$ for all $k \in K$, and if and only if $\frac{1}{\alpha} k_0 \in K$ and

$$|\alpha| f \left(\frac{1}{\alpha} k_0 - k \right) \leq |\alpha| f(x - k)$$

for all $k \in K$, and this implies that $\frac{1}{\alpha} k_0 \in R_{K}^f(x)$. So $k_0 \in \alpha R_{K}^f(x)$.

(4) It is clear by (3).

Corollary 1

Let X be a topological vector space and f be a real valued function. If M be a nonempty subspace of X, then

(i) $R_{M}^f(x+y) = R_{M}^f(x) + y$, for every $x, y \in X$.

(ii) $R_{M}^f(\alpha x) = \alpha R_{M}^f(x)$ for every $x \in X$ and $\alpha \in \mathbb{R}[0]$.

Proof:

The proof is an immediate consequence of theorem (2.1) and this fact that $M + y = M$ and $\alpha M = M$ for all $y \in M$ and $\alpha \in \mathbb{R}[0]$.

Theorem 2

If K is a subspace of X and f is a real function, then

(i) K is f-coproximinal if and only if $X = K + K$. f.

(ii) K is a f-coChebyshev subspace if and only if $X = K \oplus K$. f.

Proof:

(i) (\Rightarrow) Assume that K is f-coproximinal, $x \in X$ and $k_0 \in R_{K}^f(x)$. Then, $x - k_0 \in K$. Hence $X = K + K$. f.

(ii) Let $x = K + K$. f. Then $x = k_0 + k$, $k_0 \in K, k \in K$. f and so $0 \in R_{K}^f(k) = R_{K}^f(x - k_0) = R_{K}^f(x) - k_0$; hence $k_0 \in R_{K}^f(x)$. Therefore K is f-coproximinal.

Example 1

Let $X = \mathbb{R}$ and $K \subseteq \{ (x, y) : x = y \}$, consider $f(x, y) = x^2 + y^2$, then $K = \{(x, y) : x = y \}$, and $R_{K}^f(a, a) = \left(\frac{a+b}{2}, \frac{a+b}{2} \right)$.

Therefore K is f-coChebyshev.

3. f-Coapproximation in Quotient Space

Let X be a topological vector space and M be a closed subspace of X, and $f : X \rightarrow \mathbb{R}$ be a symmetric function (i.e., $f(-x) = f(x)$). Define

$$f(x + M) = \inf \{ f(x + y) \mid y \in M \}.$$

Theorem 3

Let M be a closed subspace of X, and $K \supseteq M$ an f-coproximinal subspace of X. If $k_0 \in R_{K}^f(x)$, then $k_0 + M \in R_{K}^f(x + M)$. M
Proof:

Assume that $k_0 \in R^f_K (x)$ and $k_0 + M$ not in $R^f_M (x + M)$.

Then there exists $k' \in K$ such that

$$ \tilde{f}((x + M) - (k' + M)) < \tilde{f}((k' + M) - (k_0 + M)).$$

That is

$$ \tilde{f}((x - k') + M) < \tilde{f}((k' - k_0) + M).$$

Hence there exists $m \in M$ such that

$$ f((x - k') - m, t) < f((k' - k_0) + m).$$

Thus,

$$ f((x - (k' + m)) < f((k' + m) - k_0).$$

Therefore k_0 is not a f-best coapproximation to x from K; which is a contradiction. So we have $k_0 + M \in R^f_M (x + M)$ and the proof is completed.

Corollary 2

Let M be a closed subspace of X and K an f-coproximinal subspace of X containing M. Then K/M is an f-coproximinal subspace of X/M.

Corollary 3

Let M be a closed subspace of X and K an f-coproximinal subspace of X containing M. Then

$$ \pi\left(R^f_M (x)\right) \subseteq R^f_M (x + M).$$

Theorem 4

Let M be a f-proximinal closed subspace of X and K a subspace of X containing M. If $k_0 + M \in R^f_K (x + M)$, then there exists $m_0 \in M$ such that $k_0 + m_0 \in R^f_K (x)$.

Proof:

Let $k_0 + M \in R^f_K (x + M)$ where $k_0 \in K$. Then for every $k \in K$,

$$ \tilde{f}((x - M) - (k_0 - M)) \leq \tilde{f}((x - M) - (k - M)).$$

or

$$ \tilde{f}((x - k_0) + M) \leq \tilde{f}((x - k) + M).$$

By f-proximinality of K in M, there exists $m_0 \in M$ such that

$$ f((k - k_0) - m_0) = \tilde{f}((k - k_0) + M).$$

Now we have

$$ f((k - (k_0 + m_0)) = f((k - k_0) - m_0)$$

$$ = \tilde{f}((k - k_0) + M))$$

$$ \leq \tilde{f}((x - k) + M)$$

$$ \leq f((x - k)$$

for every $k \in K$. Therefore $k_0 + m_0 \in R^f_K (x)$.

Corollary 4

Let M be a f-proximinal closed subspace of X and $K \supseteq M$ a subspace of X. If K/M is \tilde{f}-coproximinal in X/M, then K is t-coproximinal in X.

Corollary 5

Let M be a f-proximinal closed subspace of X and $K \supseteq M$ a subspace of X, then

$$ \pi\left(R^f_K (x)\right) = R^f_M (x + M).$$

Proof:

By corollary (3.3) we obtain

$$ \pi\left(R^f_K (x)\right) \subseteq R^f_M (x + M).$$

Also by theorem (3.1), K/M is \tilde{f}-coproximinal in X/M.

Now let $k_0 + M \in R^f_K (x + M)$, where $k_0 \in K$. Now by theorem (3.4) K is f-coproximinal and there exists $m_0 \in M$
such that $k_0 + m_n \in R^f_k(x)$, and so $k_0 + M \in \pi\left(R^f_k(x)\right)$; hence $R^f_k(x + M) \subseteq \pi\left(R^f_k(x)\right)$, and the proof is complete.

Theorem 5

Let M be a f-proximinal closed subspace of X and $K \supseteq M$ a subspace of X. If K is f-coChebyshev then $\frac{K}{M}$ is a \tilde{f}-coChebyshev subspace of $\frac{X}{M}$.

Proof:

By theorem (3.1), $\frac{K}{M}$ is coproximinal. Let $x + M \in (X/M)(K/M)$ be arbitrary and $k_1 + M, k_2 + M \in R^f_k(x + M)$.

By theorem (3.4) there exists $m_1, m_2 \in M$ such that $k_1 + m_1, k_2 + m_2 \in R^f_k(x)$. Since K is f-coChebyshev $k_1 + m_1 = k_2 + m_2$ and then $k_1 + M = k_2 + M$.

Lemma 1

Let M be a f-proximinal closed subspace of X and $K \supseteq M$ a subspace of X. If \tilde{K}^f is convex, then $\left(\frac{K}{M}\right)^f = \left(\frac{R^f_k}{M}\right)^{-1}(M)$ is convex.

Proof:

Let $x + M, y + M \in \left(\frac{\tilde{K}^f}{M}\right)^f$ and $0 < \lambda < 1$. Then $M \in R^f_k(x + M)$ and $M \in R^f_k(y + M)$. Now from corollary (3.6) there exists $k_1 \in R^f_k(x)$ and $k_2 \in R^f_k(x)$ such that $\pi(k_1) = \pi(k_2) = M$. Therefore $x - k_1, y - k_2 \in \tilde{K}^f$. Since \tilde{K}^f is convex then $\lambda(x - k_1) + (1 - \lambda)(y - k_2) \in \tilde{K}^f$. It follows that $\lambda k_1 + (1 - \lambda)k_2 \in \tilde{K}^f_k(\lambda x + (1 - \lambda) y)$; also

$\pi(\lambda k_1 + (1 - \lambda)k_2) = \lambda \pi(k_1) + (1 - \lambda)\pi(k_2) = \lambda M + (1 - \lambda) M = M$.

Now by corollary (3.6), $M \in R^f_k(\lambda x + (1 - \lambda) y + M)$; that is $\lambda(x - k_1) + (1 - \lambda)(y - k_2) \in \left(\frac{\tilde{K}}{M}\right)^f$. Therefore $\left(\frac{\tilde{K}}{M}\right)^f$ is convex.

Theorem 6

Let M be a f-proximinal closed subspace of X and $K \supseteq M$ be a f-coproximinal subspace of X such that K is f-quasi-coChebyshev. Then $\frac{K}{M}$ is \tilde{f}-quasi-coChebyshev.

Proof:

Since K is f-coproximinal, therefore $\frac{K}{M}$ is f-coproximinal. Let $x + M \in \frac{X}{M}$ and $\{k_n + M\}$ be an arbitrary sequence in $R^f_k(x + M)$.

Then for every $k + M \in \frac{K}{M}$

$$\tilde{f}((k_n - k) + M) = \tilde{f}((k_n + M) - (k + M)) \leq \tilde{f}((x + M) - (k + M)) = \tilde{f}(x - k) + M \leq \tilde{f}(x - k).$$

Since M is f-proximinal, by theorem (3.4) there exist $m_n \in M$ such that $k_n + m_n \in R^f_k(x)$, for all $n \geq 1$. Now since $R^f_k(x)$ is f-compact, there exists a subsequence $\{k_n + m_n\}$ such that it is f-converges to an element $\alpha_0 \in R^f_k(x)$; therefore $\alpha_0 + M \in R^f_k(x + M)$. It follows that $\{k_n + M\}$ is f-converges to an element $\alpha_0 + M$. Hence $\frac{K}{M}$ is quasi \tilde{f}-coChebyshev.

4. References