Total views : 288

Study of the Absorptance of a Thin Layer of the Vanadium Dioxide


  • Physics Laboratory of Solid FSDM Fès, University Sidi Mohamed Ben Abdellah, Morocco
  • Laboratory of the Thin Layers and Surface Treatment by Plasma ENS-Fès, Morocco


Objectives: This work shows the study of the evolution of the CoeffA absorptance of a thin layer of VO2 according to the energy of the incidental photon in order to deduce its optical response in the average I.R, the close I.R, the remote I.R, the visible spectrum and the U.V. Methods/Statistical Analysis: We have used the model of Drude for the thin layer of VO2 in the metal state, and the model of Lorentz for the semiconductor state of this thin layer in order to simulate the optical functions of this material, and in particular the absorptance. An analysis of the maxima and minima of this optical function was made in the two states, semiconductor and metal, according to the model used. Findings: In the semiconductor state of the vanadium dioxide, we noticed that the number of oscillators of Lorentz influences clearly the description of the absorptance and these specific points: maxima and minima. Indeed, the model with seven oscillators is strongly maintained if compared to that of four oscillators. Whereas in the metal state of this thin layer of the vanadium dioxide, the model of Drude with only one oscillator describes the variation of CoeffA according to the energy ω (ev) of the incidental photons in the spectrum from the infra-red to the ultraviolet ray. Application/Improvements: This general study allows the incorporation of this intelligent material in various technological nano applications, like the solar air-conditioners and the thermal pumps.


Metal State, Semiconductor State, Thin Layer, The Absorptance, The Infra-Red, Vanadium Dioxide.

Full Text:

 |  (PDF views: 197)


  • Cavalleri A, Dekorsy T, Chong HHW, Kieffer JC, Schoenlein RW. Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale.Physical Review B. Int American Physical Society (APS).2004 Oct 13; 70(16):1–17.
  • Morin FJ. Oxides which show a metal-to-insulator transition at the neel temperature. Physical Review Letters American Physical Society (APS). 1959 Jul 1; 3(1):34–6.
  • Paradis, Suzanne. Étude du VO2 déposé par pulvérisation magnétron RF comme matériau fonctionnel pour la commutation IR. Recherche et développement pour la défense Canada; 2006. p. 2005–375.
  • Gmelin Handbook. Section Vanadium Oxides. 1990; 16:482.
  • Xiao D, Kim KW, Zavada JM. Imaging properties of a metallic photonic crystal. Journal of Applied Physics. AIP Publishing. 2007; 101(11):113–05.
  • Golubev VG, Davydov VY, Kartenko NF, Kurdyukov DA, Medvedev AV, Pevtsov AB. Phase transition-governed opal–VO2 photonic crystal. Applied Physics Letters. AIP Publishing. 2001; 79(14):21–7.
  • Kim HT, Chae BG, Youn DH, Maeng SL, Kim G, Kang KY.Mechanism and observation of Mott transition in VO2based two- and three-terminal devices. New J Phys. IOP Publishing. 2004 May 18; 6:52–2.
  • Deep GS. Modeling of the hysteretic metal-insulator transition in a vanadium dioxide infrared detector. Opt Eng SPIE-Intl Soc Optical Eng. 2002 Oct 1; 41(10):2582–8.
  • Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, et al. VO2 thermochromic smart window for energy savings and generation.Scientific Reports. Nature Publishing Group. 2013 Oct 24; 3.
  • Berger M. Porosity of nanocoating improves ‘smart’ window performance. Available from:
  • Verleur HW, Barker AS, Berglund CN. Optical properties of VO2 between 0.25 and 5 eV. Physical Review. American Physical Society (APS). 1968 Aug 15; 172(3):788–98.
  • Mossanek RJO, Abbate M. Optical response of metallic and insulating VO2 calculated with the LDA approach. Journal of Physics: Condens Matter. IOP Publishing. 2007 Jul 26; 19(34):346225.
  • Kakiuchida H, Jin P, Nakao S, Tazawa M. Optical properties of vanadium dioxide film during semiconductive–metallic phase transition. Japanese Journal of Applied Physics. Japan Society of Applied Physics. 2007 Jan 26; 46(5):113–6.
  • Lorentz HA. The motion of electrons in metallic bodies. I Proceedings Koninklijke Akademie van Wetenschappen.1905; 7:438–53.
  • Lorentz HA. The motion of electrons in metallic bodies. II Proceedings Koninklijke Akademie van Wetenschappen.1905; 7:585–93.
  • Lorentz HA. The motion of electrons in metallic bodies. III Proceedings Koninklijke Akademie van Wetenschappen.1905; 7:684–91.
  • Drude P. Zur Elektronentheorie der Metalle. Annalen der Physik. Wiley-Blackwell. 1900; 306(3):566–613.
  • Drude P. Zur Elektronentheorie der Metalle; II. Teil Galvanomagnetische und thermomagnetische Effecte. Annalender Physik. Wiley-Blackwell. 1900; 308(11):369–402.
  • Kana JBK, Ndjaka JM, Vignaud G, Gibaud A, Maaza M.Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Optics Communications. Elsevier BV. 2011 Feb; 284(3):807– 12.
  • Benchaib A, Mdaa A, Zorkani I, Jorio A. Optical properties of the Vanadium dioxide. Journal of Advances in Physics.2015; 8(2):2148–55.
  • Benchaib A, Mdaa A, Zorkani I, Jorio A. Optical properties of a thin layer of the Vanadium dioxide at the metal state. Journal of Advances in Physics. 2015; 9(1):2303–10.
  • kianfar E. Production and identification of vanadium oxide nanotubes. Indian Journal of Science and Technology. 2015 May; 8(S9):455–64.
  • Kathirvelu S, D’Souza L, Dhurai B. A comparative study of multifunctional finishing of cotton and P/C blended fabrics treated with titanium dioxide/zinc oxide nanoparticles.Indian Journal of Science and Technology. 2008 Dec; 1(7):1–12.


  • »

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.