Total views : 197

Optimization of Gesture Recognition Algorithm-aid of Artificial Neural Netwok

Affiliations

  • Department of Computer Science and Engineering, SRM University, Kattankulathur, Chennai - 603203, Tamil Nadu, India
  • Medical Research Centre, SRM University, Kattankulathur, Chennai - 603203, Tamil Nadu, India

Abstract


Objective:The Objective of our research is to establish an Artificial Neural Network (ANN) model for Braille coded gesture pattern recognition process and to optimize the weight of the ANN model using optimization algorithms. The ANN utilized to predict the outputs such as right gesture, left gesture, top and bottom gestures of the known input values. Methods: To optimize the weight of the ANN structure optimization techniques such as Genetic Algorithm (GA), Differential Evolution (DE), and Lion Algorithm (LA) are utilized to optimize the weights such as number of input neurons (α) and number of hidden neurons(β). Findings: The optimum results show that the attained empirical error values and predicted values are equal to zero in designed network. The Convergence graph demonstrates the fitness rate with minimum error 0.33 between different iterations for three optimization algorithms. The Lion algorithm results the optimal fitness value of Braille Coded Gesture ANN model. Applications: The lion algorithm can be utilized for gesture recognition in touch enabled devices in the area of human computer interaction.

Keywords

Artificial Neural Network, Braille Code, Gestures, Lion Algorithm, Territorial Defense, Territorial Takeover, Touch Screen, Velocity.

Full Text:

 |  (PDF views: 156)

References


  • Bonner M, Brudvik J,Abowd G,Edwards K. No-look notes: Accessible eyes-free multi-touch text entry. Journal of Springer in Pervasive Computing. 2010:409–26.
  • Caporusso N, Mkrtchyan L, Badia LL. A multimodal network board game system for blind people.IEEE transactionon Applied Sciences on Biomedical and Communication Technologies, USA; 2008. p.1–5.
  • Kane S,Wobbrock J. Usable gestures for blind people:Understanding preference and performance. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,Canada; 2011. p.413–22.
  • Haga Y, Makishi W, Iwami K, Totsu K, Nakamura K, Esashi M. Dynamic Braille display using SMA coil actuator and magnetic latch. Journal of Sensors and Actuators A:Physical. 2005; 119(2):316–22.
  • Rodrigo S, Guesgen H. Fuzzy spatial reasoning in psycholinguistic experiments on braille reading.Proceedings of Fuzzy Systems IEEE World Congress on Computational Intelligence,New Zealand. 1998; 1:1–4.
  • Frey B, Southern C,Romero M.Braille touch: Mobile texting for the visually impaired. Journal of Universal Access in Human-Computer Interaction, Atlanta; 2011. p.19–25.
  • PanditA, DandD, Mehta S, SabesanS, Daftery A. A simple wearable hand gesture recognition device using iMEMS. Proceedings of Soft Computing and Pattern Recognition; 2009. p.592–7.
  • Sax C,Lawrence E. Tangible information: Gestures for a portablee-nursing touch screen interface. 11th IEEE Conference one-Health Networking, Applications and Services, Australia; 2009. p.1–8.
  • Oliveira J, Guerreiro T, Nicolau H,Jorge J,Gonçalves D. Blind people and mobile touch-based text-entry:Acknowledging the need for different flavors. proceedings ofthe 13th International ACM SIGACCESS Conference on Computers and Accessibility,USA; 2011. p.179–86.
  • Southern C,Clawson J, Frey B,Abowd G,RomeroM. An evaluation of BrailleTouch: Mobile touchscreentext entry for the visually impaired. Proceedings of 14th conference on Human-computer interaction with mobile devices and services, ACM, USA; 2012. p.317–26.
  • Azenkot S, WobbrockJ,Prasai S,Ladner R. Input finger detection for nonvisual touch screentext entry in perkinput. Proceedingsof Graphics InterfaceCanadian Information Processing Society, Canada; 2012. p.121–9.
  • Cheng S. Using the callback function realization touch screen gestures recognition ofcomputer. Proceedingsof Computational Intelligence and Security (CIS),USA; 2011.p.1243–5.
  • Fuccella V,Rosa MD,Costagliola G. Novice and expert performance of keyscretch: A gesture-based text entry method for touch-screens. Journal of IEEE Transactions On Human-Machine Systems.2014; 44(4):511–23.
  • Ito S,Yoshida T, HaradaF, Shimakawa H. Specific touch gesture on mobile devices to find attractive phrases in news browsing. Proceedingsof Computer Software and Applications Conference (COMPSAC),Japan; 2014. p.519–28.
  • Jayant C, Acuario C, Johnson W, Hollier J, Ladner R. VBraille: Haptic braille perception using a touch-screen and vibration on mobile phones. Proceedings of the 12th international ACM SIGACCESS conference on Computers and accessibility,USA; 2010. p.1–2.
  • Banubakode S,Dhawale C.Survey of eye-free text entry techniques of touch screenmobile devices designed for visually impaired users. Journal of Informatics and Communication Technology (CJICT). 2013; 1(2):1–12.
  • Gaba VH, Desai D,DesaiA, Pandey SK. Brailler: Enabling the visually impaired to use smartphones. Journal of Current Engineering and Technology. 2014; 4(5):3605–9.
  • Rodriguez-Sancheza R, Moreno-Alvarez M,Martin M,Borromeo B,Hernandez-Tamames H. Accessible smartphones for blind users: A case study for a wayfinding system. Journal of Expert Systems with Applications. 2014; 41(1):7210–22.
  • Schmidtn M, Weber G. Template based classification of multi-touch gestures. Journal of Pattern Recognition. 2013; 46(9):2487–96.
  • OliveiraJ, Guerreiro J,Nicolau H, Jorge J, Gonçalves D. BrailleType: Unleashing Braille over touch screenmobilephones. Journal of Human-Computer Interaction. 2011:100–7.
  • Karmakar S, Chatterjee RP,Dutta U.Improvement in quality testing of Braille printer output with Euclideandistance measurement using camera calibration. Journal of Engineering, Science and Technology.2010; 2(1):35–48.
  • Rantala J,Raisamo R,Lylykangas J,Surakka V, Raisamo J, Salminen K,Pakkanen T, Hippula A.Methods for presenting Braille characters on a mobile device with a touchscreen and tactile feedback. Journal of IEEE Transactions on Haptics. 2009; 2(1):28–38.
  • Aultrin KSJ, Anand MD. Development of an ANN model to predict MRR and SR during AWJMoperation for lead tin alloy. Indian Journal of Science and Technology. 2016 Mar; 9(13).DOI:10.17485/ijst/2016/v9i13/90550.
  • Chandar SK, Sumathi M, Sivanandam SN. Prediction of stock market price using hybrid of wavelet transform and artificial neural network. Indian Journal of Science and Technology. 2016 Feb; 9(8).DOI:10.17485/ijst/2016/v9i8/87905.
  • Rizwan JM, Krishnan PN, Karthikeyan R, Kumar SR. Multi-layer perception type artificial neural network based traffic control. Indian Journal of Science and Technology. 2016 Feb; 9(5).DOI:10.17485/ijst/2016/v9i5/87267.
  • Shekar MS, Krishna PM, VenkatesanM. Artificial neural network based prediction of pressure drop in heat exchangers. Indian Journal of Science and Technology. 2015 May; 8(S9).DOI: 10.17485/ijst/2015/v8iS9/65549.
  • Sharma UM. Hybrid feature based face verification and recognition system using principal component analysis and artificial neural network. Indian Journal of Science and Technology. 2015 Jan; 8(S1).DOI:10.17485/ijst/2015/v8iS1/57754.
  • Latha A, Reddy KVK, Rao JCS, Raju AVSR. Performance analysis on modeling of loop heat pipes using artificial neural networks. Indian Journal of Science and Technology. 2010 Apr; 3(4).DOI:10.17485/ijst/2010/v3i4/29737.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.