Total views : 316

Single Stage Multi Input DC-DC/AC Boost Converter with Sliding Mode Control

Affiliations

  • SRM University, Kattankulathur – 603203, India

Abstract


Objectives: This paper proposes a single stage conversion of multiple input dc to dc/ac output. This structure reduces multi stage conversion and eliminates the need of transformer. Methods/Statistical Analysis: The bidirectional switching port is used to reduce circuit complexity and for simple operation. The bidirectional circuit connects battery to load. The voltage is stepped up to high level using boost converter. The output obtained is pure ac/dc without the need of filter. The voltage can be regulated with the help of a battery which charges and discharges when required. The bidirectional circuit switching control is done by using sliding mode controller. Findings: The control of the converter is possible during the change in voltage from 40v to 50v. Novelty/Improvement: Implementing sliding mode control in simulation.

Keywords

Distributed Generation (DG), Fuel Cells (FC), Multi Input Converter (MIC), Photo Voltaic (PV), Sliding Mode Control (SMC).

Full Text:

 |  (PDF views: 560)

References


  • Saeed Danyali, Seyed Hossein Hosseini, Gevorg B. Gharehpetian. New Single-Stage Multi-input DC-DC/AC Boost Converter. IEEE Trans. On Power Electron. Feb 2014; 292:775-88.
  • Ch. Liu , Chen YM. A systematic approach to synthesizing multi-input DC–DC converters. IEEE Trans. Power Electron. 2009 Jan; 24(1):116-127.
  • Chen YM, Liu YC, Hung SC, Cheng CS. Multi-input inverter for grid-connected hybrid PV/Wind power system. IEEE Trans. Power Electron. 22(3); 1070-77.
  • Yan L, Xinbo R, Dongsheng Y, Fuxin L, Tse CK. Synthesis of multiple-input DC/DC converters. IEEE Trans. Power Electron. 2010; 25(9):2372-85.
  • Kwasinski A. Identification of feasible topologies for multiple-input DC–DC converters. IEEE Trans. Power Electron. Mar. 2010; 24(3):856-61.
  • Solero L, Lidozzi A, Pomilio JA. Design of multiple-input power converter for hybrid vehicles. IEEE Trans. Power Electron. Sep. 2005; 20(5):1007-16.
  • Khaligh A, Cao J, Lee YJ. A multiple-input DC–DC converter topology. IEEE Trans. Power Electron. 2009 Mar; 24(3):862-68.
  • Nejabatkhah F, Danyali S, Hosseini SH, Sabahi M, MozafariNiapour SAKH. Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system. IEEE Trans. Power Electron. May 2012; 27(5):2309-24.
  • Tao H, Kotsopoulos A, Duarte JL, Hendrix MAM. Family of multiport bidirectional DC–DC converters. In: Proc. IEEE Elect. Power Appl., 2006 Apr, 451-58.
  • Qian Zh, Rahman OA, Atrash HA, Batarseh I. Modeling and control of three-port DC/DC converter interface for satellite applications. IEEE Trans. Power Electron. 2010 Mar; 25(3):637-49.
  • Qian Zh, Rahman OA, Batarseh I. An integrated four-port DC/DC converter for renewable energy applications. IEEE Trans. Power Electron. 2010 Jul; 25(7):1877-87.
  • Wu H, Sun K, Ding S, Xing Y. Topology derivation of non-isolated three-port DC–DC converters from DIC and DOC. IEEE Trans Power Electron. 2013 Jul; 28(7):3297-307.
  • Chen Y-M, Huang AQ, Yu X. A high step-up three-port DC-DC converter for stand-alone PV/battery power systems. IEEE Trans. Power Electron. 2013 Nov; 28(11):5048-62.
  • Sarhangzadeh M, Hosseini SH, Sharifian MBB, Gharehpetian GB. Multi-input direct DC-AC converter with high frequency link for clean power generation systems. IEEE Trans. Power Electron.2011 Jun; 26(6):625-31.
  • Duarte JL, Hendrix M, Simoes MG. Three-port bidirectional converter for hybrid fuel cell systems. IEEE Trans. Power Electron. 2007 Mar; 22(2):480-87.
  • Tao H, Duarte JL, Hendrix MAM. Line-interactive UPS using a fuel cell as the primary source. IEEE Trans. Ind. Electron. 2008 Aug; 51(3):3012-21.
  • Chen YM, Liu Y Ch, Hung Sh Ch, Cheng Ch Sh. Multi-input inverter for grid-connected hybrid PV/Wind power system. IEEE Trans. Power Electron. 2007 May; 22(3):1070-77.
  • Zhou Y, Huang W. Single-stage boost inverter with coupled inductor. IEEE Trans. Power Electron. 2012 Apr; 27(4):1885-93.
  • Peng FZ, Shen M, Holland K. Application of Z-source inverter for traction drive of fuel cell-battery hybrid electric vehicles. IEEE Trans. Power Electron. 2007 May; 22(3):1054-61.
  • Sanchis P, Ursæa A, Gub´ıa E, Marroyo L. Boost dc–ac inverter: A new control strategy. IEEE Trans. Power Electron. 2005 Mar; 20(2):343-53.
  • Hosseini SH, Danyali S, Goharrizi AY. Single stage single phase series-grid connected PV system for voltage compensation and power supply. In: Proc. IEEE Conf. Power Energy Society General Meet. 2009, p. 1-7.
  • Jain S, Agarwal V. A single-stage grid connected inverter to pology for solar PV systems with maximum power point tracking. IEEE Trans. Power Electron. 2007 Sep; 22(5):1928-40.
  • Gonzalez R, Lopez J, Sanchis P, Marroyo L. Transformerless inverter for single-phase photovoltaic systems. IEEE Trans. Power Electron. 2007 Mar; 22(2):693-97.
  • Shen M, Peng FZ, Tolbert LM. Multilevel DC–DC power conversion system with multiple DC sources. IEEE Trans. Power Electron. 2008 Jan; 23(1):420-26.
  • Blaabjerg F, Chen Z, Kjaer SB. Power electronics as efficient interface in dispersed power generation systems. IEEE Trans. Power Electron. 2004 Sep; 19(5):1184-94.
  • Xue Y, Chang L, Kjær SB, Bordonau J, Shimizu T. Topologies of single-phase inverters for small distributed power generators: An overview. IEEE Trans. Power Electron. 2004 Sep; 19(5):1305-14.
  • Ho BMT, Chung HS-H. An integrated inverter with maximum power tracking for grid-connected PV systems. IEEE Trans. Power Electron.2005 Jul; 20(4):953-62.
  • Femia N, Petrone G, Spagnuolo G, Vitelli M. Optimization of perturb and observe maximum power point trackingmethod. IEEE Trans. Power Electron. 2005 Jul; 20(4):963-73.
  • Armstrong M, Atkinson DJ, Johnson CM, Abeyasekera TD. Auto-calibrating DC link current sensing technique for transformerless, grid connected, H-bridge inverter systems. IEEE Trans. Power Electron. 2006 Sep; 21(5):1385-96.
  • Li Q, Wolfs P. A current fed two-inductor boost converter with an integrated magnetic structure and passive lossless snubbers for photovoltaic module integrated converter applications. IEEE Trans. Power Electron. 2007 Jan; 22(1): 309-21.
  • Solero L, Caricchi F, Crescimbini F, Honorati O, Mezzetti F. Performance of a 10 kW power electronic interface for combined wind/PV isolated generating systems. In: Proc. IEEE Power Electron. Spec. Conf., 1996, p. 1027-32.
  • Caricchi F, Crescimbini F, Napoli AD, Honorati O, Santini E. Testing of a new DC–DC converter topology for integrated wind–photovoltaic generating systems. In: Proc. Eur. Conf. Power Electro. Appl., 1993, p. 83–88.
  • Crescimbini F, Carricchi F, Solero L, Chalmers BJ, Spooner E, Wei W. Electrical equipment for a combined wind/PV isolated generating system. In: Proc. Inst. Electr. Eng. Oppor. Adv., 1996, p. 59–64.
  • Matsuo H, Shigemizu T, Kurokawa F, Watanabe N. Characteristics of the multiple-input DC–DC converter. In: Proc. IEEE Power Electron Spec. Conf., 1993, p. 115-20.
  • Matsuo H, Lin W, Kurokawa F, Shigemizu T, Watanabe N. Characteristics of the multiple-input DC–DC converter. IEEE Trans. Ind. Electron. 2004 Jun; 51(3):625-31.
  • Kobayashi K, Matsuo H, Sekine Y. Novel solar-cell power supply system using a multiple-input DC–DC converter. IEEE Trans. Ind. Electron. 2006 Feb; 53(1):281-86.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.