Total views : 132

Mechanical Properties of Biaxial Braided Fiber Nanocomposites


  • Mechanical Engineering Department, Dr. M. G. R. Educational and Research Institute University, Maduravoyal, Chennai - 600095, Tamil Nadu, India


Objectives: This paper is about the mechanical characters of biaxial braided carbon fiber nanocomposites. Methods/Statistical Analysis: Hand layup technique is used for fabrication of biaxial braided fiber nanocomposites. Seven samples have been prepared with Unfilled, TiO2 (1, 3 & 5wt %) and Nanoclay (1, 3 & 5 wt %). The above nanoparticles were mixed in the epoxy resin using magnetic stirrer. Mechanical properties (tensile, flexural and impact) were carried out. Findings: The experimental outcomes showed that the mechanical characterization of unfilled biaxial braided fiber nanocomposite material was lower than the TiO2 (1, 3 & 5wt %) and nanoclay (1, 3 & 5 wt %) biaxial braided fiber nanocomposite materials. 3wt% TiO2 and 3wt% nanoclay composite materials showed better improvement in the mechanical characters. However, 3wt% nanoclay composite material showed very excellent improvement in the mechanical characters than 3wt% TiO2. This is due to nanoclay particles have higher strength and higher modulus than TiO2 particles. Application/Improvements: The developed biaxial braided fiber nanocomposite materials were used in the field of aeronautics, automotive and space recreation products because of their excellent properties, light weight, corrosion resistance, high energy absorption and excellent strength characteristics.


Biaxial, Braided Fibre, Mechanical Properties, Nanoclay, TiO2

Full Text:

 |  (PDF views: 187)


  • Lomov SV, Nakai A, Parnas R, Verpoest I, Ghosh SB. Experimental and theoretical characterization of the geometry of flat two- and three-axial braids. Textile Research Journal. 2002 Aug; 72(8):706–12. doi:10.1177/004051750207200810.
  • Parimala R, Jabaraj DB. A study on E-glass fibre reinforced composites. Journal of Harmonized Research in Engineering. 2014; 2(2):274–80.
  • Ajayan PM, Schadler LS, Braun PV. Nanocomposite science and technology. Weinheim: WILEY-VCH GmbH & Co. KGaA; 2003.
  • Kim BC, Park SW, Lee DG. Fracture toughness of the nanoparticle reinforced epoxy composite. Composite Structures. 2008 Oct; 86(1–3):69–77. doi:10.1016/j.compstruct.2008.03.005.
  • Tang W, Santar MH, Advani SG. Melt processing and mechanical property characterization of multi-walled carbon nanotubr/high density polyethylene (MWNT/HDPE) composite films. Carbon. 2003 Jan; 41(14):2779–85. doi:10.1016/S0008-6223(03)00387-7
  • Zeng Y, Liu HY, Mai YW, Du XS. Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Composites: Part B Engineering. 2012 Jan; 43(1):90–4. doi:10.1016/j.compositesb.2011.04.036.
  • Sun L, Ronald F, Gordaninejad GF, Suhr J. Energy absorption capability of nanocomposites: A review. Composites Science and Technology. 2009 Nov; 69(14):2392–409. doi:10.1016/j.compscitech.2009.06.020.
  • Parimala R, Jabaraj DB. Carbon braided biaxial fiber with TiO2: Mechanical properties. International Conference on Science Engineering and Management Research (ICSEMR); 2014 Nov. p. 1–4.
  • Tao P, Li Y, Rungta A, Viswanath A, Gao J, Benicewicz BC, Siegel RW, Schadler L. TiO2 nanocomposites with high refractive index and transparency. Journal of Material Chemistry. 2011 Oct; 21(46):18623–9. doi:10.1039/c1jm13093e.
  • Marikkannan SK, Ayyasamy EP. Synthesis, characterisation and sintering behaviour influencing the mechanical, thermal and physical properties of cordierite-doped TiO2. Journal of Materials Research and Technology. 2013 Jul- Sep; 2(3):269–75. doi:10.1016/j.jmrt.2013.03.016.
  • Heiligtag FJ, Niederberger M. The fascinating world of nanoparticle research. Materials Today. 2013 Jul–Aug; 16(7–8):262–72. doi:10.1016/j.mattod.2013.07.004.
  • Mont FW, Kim JK, Schubert MF, Schubert EF, Siegel RW. High-refractive-index TiO2 –nanoparticle-loaded encapsulants for light-emitting diodes. Journal of Applied Physics. 2008 Apr; 103(8):1–6. doi:10.1063/1.2903484.
  • Dorigato A, Morandi S, Pegoretti A. Effect of nanoclay addition on the fiber/matrix adhesion in epoxy/glass composites. Journal of Composite Materials. 2012 Jun; 46(12):1439–51. doi:10.1177/0021998311420311.
  • Quaresimin M. Private communication. Journal of Hormonized Research in Engineering. 2009; 2(2):274–80.
  • Lama CK, Cheunga HY, TakLaua K, Zhoua LM, Hob MW, Huib D. Cluster size effect in hardness of nanoclay/epoxy composites. Composites: Part B Engineering. 2005 Apr; 36(3):263–9. doi:10.1016/j.compositesb.2004.09.006.
  • Liu W, Hoa SV, Pugh M. Fracture toughness and water uptake of high-Performanceepoxy/nanoclaynanocomposites. Composites Science and Technology. 2005 Dec; 65(15–16):2364–73. doi:10.1016/j.compscitech.2005.06.007.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.