Total views : 213

Towards a Semantic Trajectory Similarity Measuring


  • Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia
  • Departamento de Informática e Estatística, Universidade Federal de Santa Catarina, Florianópolis, Brazil


Objectives: To propose a new similarity function to determine trajectory similarity considering semantic aspects. Methods/Analysis: We propose different methods to calculate the similarity according to visited sites or activities performed: the first one considers only the sites included in the trajectories and the second considers the activities performed by the trajectories in the sites. A third method is proposed to find the similarity bitten trajectories based on both sites and activities. Findings: The similarity measure presented in this work allows us to make comparisons and user analysis according to trajectory data generated by users, which represents their routines, likes and preferences. This could be a key element for recommender systems, clustering or social networks. Novelty/Improvements: Our methods consider semantic aspects for finding the similarity of trajectories, considering visited sites and activities performed in these sites.


moving objects; trajectory similarity; semantic trajectories; similarity measures

Full Text:

 |  (PDF views: 123)


  • Kruskal JB. An overview of sequence comparison: time warps, string edits, and macromolecules. Society for Industrial and Applied Mathematics SIAM Review. 1983 Apr; 25(2):201-37. Crossref
  • Keogh E, Ratanamahatana AC. Exact indexing of dynamic time warping. Knowledge and Information Systems. 2004 Mar; 7(3):358–86. Crossref
  • Vlachos M, Kollios G, Gunopulos D. Discovering similar multidimensional trajectories. Proceedings 18th International Conference on Data Engineering, USA; 2002. p.673–84. Crossref
  • Chen L, Özsu MT, Oria V. Robust and fast similarity search for moving object trajectories. Proceedings of the 2005 ACM SIGMOD international conference on Management of data, Maryland; 2005. p. 491–502. Crossref
  • Alvares LO, Bogorny V, Kuijpers B, de Macedo JAF, Moelans B, Vaisman A. A Model for enriching trajectories with semantic geographical information. Proceedings of the 15th annual ACM International Symposium on Advances in Geographic Information Systems, Washington; 2007. p.22:1–8. Crossref
  • Parent C, Spaccapietra S, Renso C, Andrienko G, Andrienko N, Bogorny V. Semantic trajectories modeling and analysis.ACM ComputSurv. 2013 Aug; 45(4):1–32. Crossref
  • Bogorny V, Renso C, de Aquino AR, de Lucca Siqueira F, Alvares LO. CONSTAnT – A conceptual data model for semantic trajectories of moving objects. Transactions in GIS.2014 Feb; 18(1):66–88. Crossref
  • Spaccapietra S, Parent C, Damiani ML, de Macedo JA, Porto F, Vangenot C. A conceptual view on trajectories. Data & Knowledge Engineering. 2008 Apr; 65(1):126–46. Crossref
  • Liu H, Schneider M. Similarity measurement of moving object trajectories. Proceedings of the 3rd ACM SIGSPATIAL International Workshop on GeoStreaming, California; 2012. p. 19–22. Crossref
  • Xiao X, Zheng Y, Luo Q, Xie X. Inferring social ties between users with human location history. Journal of Ambient Intelligence and Humanized Computing. 2012 Dec; 5(1):3–19. Crossref
  • Furtado AS, Kopanaki D, Alvares LO, Bogorny V. Multidimensional similarity measuring for semantic trajectories.Transactions in GIS. 2015 Jul; 20(2):280–98. Crossref
  • Lee J-G, Han J, Whang K-Y. Trajectory clustering: A partitionand-group framework. Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, China; 2007. p. 593–604. Crossref
  • Zhao X. Progressive refinement for clustering spatio-temporal semantic trajectories. Proceedings of 2011 International Conference on Computer Science and Network Technology, China; 2011. p. 2695–9. Crossref
  • Berndt D, Clifford J. Using dynamic time warping to find patterns in time series. Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining; 1994. p. 359–70.
  • Lee M-J, Chung C-W. A user similarity calculation based on the location for social network services. Proceedings of the 16th International Conference on Database Systems for Advanced Applications - Volume Part I, China; 2011. p.38–52. Crossref
  • Ying JJ-C, Lu EH-C, Lee W-C, Itng T-C, Tseng VS. Mining user similarity from semantic trajectories. Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, California; 2010. p. 19–26.Crossref
  • Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma W-Y. Mining user similarity based on location history. Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, California; 2008. p. 1–10. Crossref
  • Yanagisawa Y, Akahani J-i, Satoh T. Shape-based similarity query for trajectory of mobile objects. Proceedings of the 4th International Conference on Mobile Data Management, Australia; 2003. p. 63–77. Crossref
  • Kreveld MV, Luo J. Trajectory similarity of moving objects.Young Researchers Forum Proceedings of the 5th Geographic Information Days, Germany; 2007. p. 229–32.
  • Trajcevski G, Ding H, Scheuermann P, Tamassia R, Vaccaro D. Dynamics-aware similarity of moving objects trajectories.Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, Washington; 2007. p. 11:1–8. Crossref
  • Cao H, Wolfson O. Trajcevski G. Spatio-temporal data reduction with deterministic error bounds. The VLDB Journal.2006 Sep; 15(3):211–28. Crossref
  • Tiakas E, Papadopoulos AN, Nanopoulos A, Manolopoulos Y, Stojanovic D, Djordjevic-Kajan S. Searching for similar trajectories in spatial networks. Journal of Systems and Software. 2009 May; 82(5):772–88. Crossref
  • Clasificación actividades recreativas. [Internet]. [cited 2015 Aug 20]. Available from: =1074811614949_1572273732_232077/Clasificacion.%20 Actividades%20recreativas.cmap.
  • Hwang JR, Kang HY, Li KJ. Spatio-temporal similarity analysis between trajectories on road networks. Perspectives in Conceptual Modeling. Lecture Notes in Computer Science.Berlin, Heidelberg; 2005. p. 280–9. Crossref


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.