Total views : 160

Space Time Coding Techniques in MIMO: A Review

Affiliations

  • Department of Electronics and Communication Engineering, Lovely Professional University Phagwara – 144411,Punjab, India

Abstract


This paper explore the basic approaches used for of space-time coding technique. The emerging field of wireless evaluation such as Multiple Input Multiple Output (MIMO) and Antenna diversity plays an important role in space-time code design. Spatial diversity techniques by the means of multiple transmitting and receiving antennas and the performance of MIMO systems has been discussed for different space-time coding structures such as Alamouti, OSTBC3, OSTBC4 etc. Space-time coding techniques rely on the construction of matrices and the signal is to be transmitted at different period of time from multiple of antennas. These code structures utilises the diversity schemes to improve the bit error rate and thus to achieve higher data rates without bandwidth expansion.

Keywords

BER, Multiple Input Multiple Output (MIMO), OSTBC3, OSTBC4, SNR, Spatial Diversity, STBC, STTC

Full Text:

 |  (PDF views: 289)

References


  • Alamouti S. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas of Communication. 1998; 16(8): 1451–58.
  • Toker C, Lambotharan S, Chambers JA. Closed-Loop QuasiOrthogonal STBCs and their performance in multipath fading environments and when combined with Turbo Codes. IEEE Transaction on Wireless Communications. 2014; 3(6): 1890–96.
  • Wu X, Jia-nian C, Rui Y. Design and analysis of low complexity Quasi Orthogonal Space-Time Block Code. IEEE Conference on Industrial Electronics and Applications. Xi’an, China: 2009. p. 3848–52. 20.
  • Wolniansky PW, Foschini GJ, Golden GD,Valenzuela RA. V-Blast: An architecture for realizing very high data rates over the rich-scattering channel. International Symposium on Signals, Systems and Electronics. 1998. p. 295–300.
  • Bien PV, Sheng W, Ma X,Wang H. Improved decoder schemes for QOSTBCs based on single-symbol decoding. International Conference on Advanced Technologies for Communications. Ho Chi Minh City: 2010. p. 7–10..
  • Tarokh V, Jafarkhani H,Calderbank AR. Space–time block codes from orthogonal designs. IEEE Transactions on Information Theory. 1999; 45(5): 1456–67.
  • Ganesan G, Stoica P. Space-Time block codes: a maximum SNR approach. IEEE Transactions on Information Theory. 2001; 47(4):1650–56.
  • Tarokh V, Seshadri N,Calderbank AR. Space–Time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory. 1998; 44( 2): 744–65.
  • Jafarkhani HA Quasi-Orthogonal Space–Time Block Code. IEEE Transaction on Communications. 2001; 49( 1): 1–4.
  • Sharma N,Papadias CB. Improved Quasi-Orthogonal codes through constellation rotation. IEEE Transaction on Communications. 2003; 51(3): 332–5.
  • Su W,Xia XG. Signal constellations for Quasi-Orthogonal Space–Time Block Codes with full diversity. IEEE Transactions on Information Theory. 2004; 50(10): 2331–47.
  • Liu L, Jafarkhani H. Application of Quasi-Orthogonal space-time block codes in beamforming. IEEE Transactions on Signal Processing.2005; 53(1): 54–63.
  • Jafarkhani H,Hassanpour N. Super-Quasi-Orthogonal Space–Time Trellis Codes for Four Transmit Antennas. IEEE Transaction on Wireless Communications. 2005; 4(1): 215–27.
  • Liang XB. A Complex Orthogonal Space-Time block code for 8 transmit antennas. IEEE Communication Letters. 2005; 9(2): 115-7.
  • Tarokh V, Seshadri N, Calderbank AR. Space-Time Codes for high data rate wireless communication: performance criterion and code construction. IEEE Transactions on Information Theory. 1998; 44(2): 744–765.
  • Baro S, Bauch G, Hansmanna A. Improved codes for spacetime trellis-coded modulation. IEEE Communications Letters. 2000; 4: 20–22.
  • Chen Z, Vucetic B Yuan J. Improved Space-Time trellis coded modulation scheme on slow Rayleigh fading channels. Electronics Letters. 2001; 37: 440–1.
  • Mavares D, Torres RP. Space-time code selection for transmit antenna diversity systems. Proceedings of the First Mobile Computing and Wireless Communication International Conference. 2006; p. 83–7.
  • Liu L,, Jafarkhani H.Space–time trellis codes based on channelphase feedback. IEEE Transactions on Communications. 2006; 54: 2186–98.
  • Celebi ME, Sahin S Aygolu U. Full rate full diversity spacetime block code selection for more than two transmit antennas.IEEE Transactions on Wireless Communications. 2007; 6: 16–19.
  • Eksim A,Celebi ME. Received SNR based code and antenna selection for limited feedback communication. Proceedings of 18th conference of IEEE Signal Processing and Communications Applications. 2010.p. 21–4.
  • Molisch AF, Win MZ. MIMO systems with antenna selection. IEEE Microwave Magazine. 2004; 5(1): 46–56.
  • Gore DA,Paulraj AJ. MIMO antenna subset selection with space-time coding. IEEE Transactions on Signal Processing. 2002; 50(10): 2580–88.
  • Wong WH,Larsson EG. Orthogonal space-time block coding with antenna selection and power allocation. Electronics Letters. 2003; 39(4): 379.
  • Tao M, Li Q,Garg HK. Extended Space-Time block coding with transmit antenna selection over correlated fading channels. IEEE Transactions on Wireless Communications. 2007; 6(9): 3137–41.
  • Chen Z, Vucetic B,Yuan J. Space-Time trellis codes with transmit antenna selection. Electronics Letters. 2003; 39(11): 854–5.
  • Jongren G, Skoglund M,Ottersten B. Combining beam forming and orthogonal space-time block coding. IEEE Transactions on Information Theory. 2002;48: 611–27.
  • Zhou S,Giannakis G. Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback. IEEE Transactions on Signal Processing. 2002; 50: 2599–613.
  • Li Y, Vucetic B, Santoso A, Chen Z. Space time trellis codes with adaptive weighting. Electronics Letters. 2003; 39: 1833–34. DOI: 10.1049/el:20031180
  • Santoso A, Li Y, Vucetic B. Weighted space time trellis codes. Electronics Letters. 2004; 40: 254–56.
  • Imai H and Hirakawa S. A new multilevel coding method using error correcting codes. IEEE Transactions on Information Theory. 1977; 23(3): 371–7.
  • Calderbank A. Multilevel codes and multistage decoding. IEEE Transactions on Communications. 1989; 37(3): 222–9.
  • Waschmann U, Fischer RF,Huber JB. Multilevel codes: theoretical concepts and practical design rules. IEEE Transactions on Information Theory. 1999; 45(5): 1361–91.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.