Total views : 77

Phase Change Chalcogenide Materials for Optical Data Storage


  • Amorphous Semiconductor Research Lab, Department of Applied Science, Madan Mohan Malaviya University of Technology, Gorakhpur – 273010, Uttar Pradesh, India


Objective: To understand the structural and characteristic properties of phase change materials which are predominant for development of existing as well as future technologies. Crystallization kinetics and unlikeness between the amorphous and crystalline phases are the two main characterizations of phase change materials. Methods: This review demonstrates the different crystallization techniques in details. For re-writable DVD, the crystallization rate should be large enough to enable a high data rate at inflated temperature. Findings: Se-Te based chalcogenide alloys are frequently used in optical memory devices. But due to some drawbacks of these alloys, we have made an attempt to enhance their properties by addition of third element. Activation energy of crystallization (using Kissinger model) and rate of crystallization for ternary glassy alloys have been listed. It has been found that Ge is the favorable dopant for data storage applications because it has low activation energy of crystallization and high rate of crystallization. Applications: The chalcogenide fibers are used in fiber optic chemical sensor systems for remote detection and identification as well as detecting chemicals in mixtures.


Chalcogenide Glasses, Crystallization Techniques, Kissinger Model, Phase Change Materials, Rate of Crystallization

Full Text:

 |  (PDF views: 41)


  • Hamann HF, Boyle MO, Martin YC, Rooks M, Wickramasinghe HK, Ultra-high-density phase-change storage and memory.Nature Materials. 2006; 5:383–7. PMid: 16604077. Crossref.
  • Wuttig M, Yamada N. Phase change materials for rewriteable data storage. Nature Materials. 2007; 6:824–32. PMid: 17972937. Crossref.
  • Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M. A map for phase-change materials. Nature Materials. 2008; 7:972–7. PMid: 19011618. Crossref.
  • Kao KF, Lee CM, Chen MJ, Tsai MJ, Chin TS. Ga2Te3Sb5 A candidate for fast and ultralong retention phase-change memory. Advanced Materials. 2009; 21:1695–9. Crossref.
  • Zheng QJ. Applied Mechanics Material. 2013; 416–417:1657– 63.
  • Dorge R, Wicker G. Lateral phase change memory. US Patent 8431922B2. 2013.
  • Mehta N. A chronological overview of phase-change materials.Reviews in Advanced Sciences and Engineering. 2015; 4(3):173–82.
  • Gosain DP, Shimizu T, Ohmuru M, Suzuki M, Bando T, Okano S. Some properties of Sb2Te3−xSex for nonvolatile memory based on phase transition. Journal of Materials Science. 1991; 26(12):3271–4. Crossref.
  • Uchino K, Takada K, Ohno K, Yoshida H, Kobayashi Y.High-density pulse width modulation recording and rewritable capability in GeSbTe phase-change system using visible laser beam at low linear velocity. Japanese Journal of Applied Physics. 1993; 32 (115):5354–60. Crossref.
  • Nobukuni N, Takashima M, Ohno T, Horie M.Microstructural changes in GeSbTe film during repetitious overwriting in phase‐change optical recording. Journal of Applied Physics.1995; 78(12):6980–9. Crossref.
  • Nakamura M, Wang Y, Matusuda O, Inoue K, Murase K.Laser spot size dependence of photo-induced crystallization process in amorphous GeSe2 film. Journal of Non-Crystalline Solids. 1996; 198-200(2):740–3. Crossref.
  • Men L, Jiang F, Gan F. Short-wavelength phase-change optical data storage in In-Sb-Te alloy films. Materials Science and Engineering: B.1997; 47(1):18–22. Crossref.
  • Woudenberg RV. Short wavelength phase-change recording, Japanese Journal of Applied Physics.1998; 37(4):2159–62. Crossref.
  • Babeva TZ, Dimitrov D, Kitova S, Konstantinov I. Optical properties of phase-change optical disks with SbxSe100−x films.Vacuum. 2000; 58(2-3):496–501. Crossref.
  • Mikla VI, Mikhalko IP, Mikla VV. Laser-induced amorphousto-crystalline phase transition in SbxSe1−xalloys. Materials Science and Engineering: B. 2001; 83(1-3):74–8. Crossref.
  • Kolobov AV, Tominaga J. Chalcogenide glasses in optical recording: Recent progress. Journal of Optoelectronics and Advanced Materials. 2002; 4(3):679–86.
  • Khan SA, Zulfequar M, Husain M. Laser-induced amorphization and crystallization on Se80Te20−xPbx thin films. Vacuum. 2004; 72(3):291–6. Crossref.
  • Zhang GJ, Gu DH, Gan FH. Optical properties and structure of Sb-rich AgInSbTe phase change thin films. Chinese Physics. 2005; 14(1):218–23. Crossref.
  • Cho JY, Kim D, Park YJ, Yang TY, Lee YY, Joo YC. The phase-change kinetics of amorphous Ge2Sb2Te5 and device characteristics investigated by thin-film mechanics. Acta Material. 2015; 94:143–51. Crossref.
  • Zhang XH, Guimond Y, Bellec Y. Production of complex chalcogenide glass optics by molding for thermal imaging. Journal of Non Crystalline Solids. 2003; 326–327:519–23. Crossref.
  • Kasap SO, Wagner T, Aiyah V, Krylouk O, Bekirov A, Tichy L. Amorphous chalcogenide Se1-x-y TexPy semiconducting alloys: Thermal and mechanical properties. Journal of Material Science. 1999; 34:3779–87. Crossref.
  • Kumar A, Lal M, Sharma K, Tripathi SK, Goyal N. Electrical properties of Se85-x Te15 Inx. Chalcogenide Letters. 2012; 9(6):275–85.
  • Cui S, Chahal R, Boussard-Pledel C, Nazabal V, Doualan JL, Troles J, Lucas J, Bureau B. From selenium- to telluriumbased glass optical fibers for infrared spectroscopies. Molecules. 2013; 18:5373–88. PMid: 23666005. Crossref.
  • Min YS, Yeal LN, Ouk RS, Jeong CK, Park YS, Yun LS, Gon YB, Jin KM, Young CS, Wuttig M. Sb–Se-based phasechange memory device with lower power and higher speedoperations. IEEE Electron Device Letter. 2006; 27:445–7. Crossref.
  • Lu Y, Song S, Shen X, Wu L, Song Z, Dai LS, Nie Q, Investigation of Ga8Sb34Se58 material for low-power phase change memory. ECS Solid State Letter. 2013; 2(10):94–6. Crossref.
  • Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nature Material. 2007; 6:824–32. Crossref.
  • Welnic W, Kalb JA, Wamwangi D. Phase change materials: from structures to kinetics. Journal of Material Research. 2007; 22:2368–75. Crossref.
  • Rahim MAA, Gaber A, Sehly AAA, Abdelazim NM. Crystal growth kinetics in Se87.5 Te10Sn2.5 glass. Journal of NonCrystalline Solids. 2013; 376:158–64. Crossref.
  • Rahim MAA. A study of the crystallization kinetics of some Se–Te–Sb glasses. Journal of Non-Crystalline Solids.1998; 241:121–7. Crossref.
  • Chander R, Thangaraj R. Optical and electrical properties of Te-substitute Sn–Sb–Se semiconducting thin films. Thin Solid Films. 2012; 520:1757–61. Crossref.
  • Saiter JM, Ledru J, Hamou A, Saffarini G. Crystallization of AsxSe1-x from the glassy state (0.005 < x < 0.03). Physica B. 1998; 245:256–62. Crossref.
  • Boolchand P, Lucovsky G, Thorpe MF. Structural paradigm of Se-rich Ge–Se glasses by high-resolution X-ray photoelectron spectroscopy. Philosphical Magzine. 2005; 85:3823–37. Crossref.
  • He H, Thorpe MF. Elastic properties of glasses. Physics Review Letter.1985; 54:2107–14. PMid: 10031231. Crossref.
  • Boolchand P, Lucovsky G, Thorpe MF. Self-organization and the physics of glassy networks. Philosphical Magzine. 2005; 85:3823–38.
  • Thorpe MF, Jacobs DJ, Chubynsky MV, Phillips JC. Selforganization in network glasses. Journal of Non-Crystalline Solids. 2000; 859:266–9. Crossref.
  • Phillips JC. Universal intermediate phases of dilute electronic and molecular glasses. Physical Review Letter. 2002; 88:216401–37. PMid: 12059486. Crossref.
  • Stevens M, Grothaus J. Boolchand P, Hernandez J. Universal structural phase transition in network glasses. Solid State Communication. 1983; 47:199–02. Crossref.
  • Boolchand P. Intermediate phases, reversibility windows, stress-free and non-aging networks and strong liquids. Chalcogenide Letters. 2006; 3:29–38.
  • Kalb J, Spaepen F, Wuttig M. Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. Journal of Applied Physics. 2003; 93:2389–93. Crossref.
  • Kalb J, Spaepen F, Wuttig M. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Applied Physics Letter. 2004; (84): 5240–2. Crossref.
  • Kalb JA, Wuttig M, Spaepen F. Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. Journal of Material Research. 2007; 22:748–54. Crossref.
  • Turnbull D. Under what conditions can a glass be formed? Contemporary Physics. 1969; 10: 473–88. Crossref.
  • Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. The American Institute of Mining, Metallurgical and Petroleum Engineers. 1939; 135(8):416– 42.
  • Avrami M. Kinetics of phase change. I General theory.Journal of Chemical Physics. 1939; 7(12):1103–9. Crossref.
  • Kissinger HE. Reaction kinetics in differential thermal analysis. Analytical Chemistry. 1957; 29(11):1702–6. Crossref.
  • Kujirai T, Akahira T. Scientific Papers of the Institute of Physical and Chemical Research. 1925; 2:223–9.
  • Akahira T, SunoseT. Joint convention of four electrical institutes. Report of Research, Chiba Institute of Technology. 1971; 16:22–31.
  • Ozawa T. A new method of analyzing thermo gravimetric data. Bulletin of the Chemical Society of Japan. 1965; 38:1881–6. Crossref.
  • Flynn H, Wall A. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B. 1966; 4(5):323–8. Crossref.
  • Ozawa T. Applicability of friedman plot. The Journal of Thermal Analysis and Calorimetry.1986; 31(3):547–51. Crossref.
  • Friedman HL. Kinetics of thermal degradation of charforming plastics from thermogravimetry. Application to a Phenolic Plastic. Journal of Polymer Science. 1964; 6(1):183–95.
  • Starink MJ. A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochimica Acta. 1996; 288(1-2):97–104. Crossref.
  • Starink MJ. The determination of activation energy from linear heating rate experiments: A comparison of the accuracy of the isoconversion methods. Thermochimica Acta. 2003; 404(1-2):163–76. Crossref.
  • Augis JA, Bennett JE. Kinetics of the transformation of metastabletin-nickel deposits I. Determination of the Avrami equation parameters by DSC or DTA. Journal of Electrochemistry Society. 1978; 125:330–37. Crossref.
  • Abu-Sehly AA, Abdelazim NM. Crystallization study of Sn additive Se-Te chalcogenide alloys. Thermochimica Acta. 2013; 566:274–80. Crossref.
  • Elabbar AA, Abu-Sehly AA. Crystallization kinetics of amorphous selenium prepared by ball milling technique: Evidence of three crystallization regimes. Materials Chemistry and Physics. 2013; 141(2–3):713–8. Crossref.
  • Lafi OA, Imran MAA, Abdullah MA, Al-Sakhel SA. Thermal characterization of Se100−xSnx (x = 4, 6 and 8) chalcogenide glasses using differential scanning calorimeter. Thermochimica Acta. 2013; 560:71–5. Crossref.
  • Sharma N, Sharda S, Sharma V, Sharma P. Effect of antimony addition on thermal stability and crystallization kinetics of germanium–selenium alloys. Journal of Non-Crystalline Solids. 2013; 371–372:1–5. Crossref.
  • Abdel-Rahim MA, Gaber A, Abu-Sehly AA, Abdelazim NM. Crystal growth kinetics in Se87.5Te10Sn 2.5 glass. Journal of Non-Crystalline Solids. 2013; 376:158–64. Crossref.
  • Al-Agel AA, Al-Arfaj EA, Al-Marzouki FM, Khan SA, Khan ZH, Al-Ghamdi AA. The effect of indium additive on the structural relaxation of Se–Sb–Sn semiconducting glasses. Materials Science in Semiconductor Processing. 2013; 16 (3):1029–34. Crossref.
  • Sharda S, Sharma N, Sharma P, Sharma V. Thermal stability and crystallization kinetics of quaternary Sb–Se–Ge–In chalcogenide glasses. Journal of Alloys and Compounds. 2014; 611:96–9. Crossref.
  • Joraid AA, Alhosuini IMA. Effect of heating rate on the kinetics and mechanism of crystallization in amorphous Se85Te10Pb5 glasses. Thermochimica Acta. 2014; 595:28– 34. Crossref.
  • Lafi OA, Imran MAA, Abu-Shaweesh NI, Al-Kurdi FM, Khatatbeh IK. Effect of chemical ordering on the crystallization behavior of Se90Te10−xSnx (x = 2, 4, 6 and 8) chalcogenide glasses. Journal of Physics and Chemistry of Solids. 2014; 75(6):790–5. Crossref.
  • Svoboda R, Gutwirth J, Malek J, Wagner T. Crystallization kinetics of Se–Te thin films. Thin Solid Films. 2014; 571(1):121–6. Crossref.
  • Tanwar N, Saraswat VK. A study of kinetics of phase transformation of Ge10Se75Sb15 chalcogenide glass. Journal of Non-Crystalline Solids. 2014; 394–395:1–5. Crossref.
  • Svoboda R, Malek J. Non-isothermal crystallization kinetics of As2Se3 glass studied by DSC. Thermochimica Acta. 2014; 579:56–63. Crossref.
  • Farid AS, Atyia HA. Glass transition and crystallization study of Te additive Se Bi chalcogenide glass. Journal of Non-Crystalline Solids. 2015; 408:123–9. Crossref.
  • Ahmad M, Thangaraj R. Crystallization kinetics and composition dependence of some physical properties of Sn–Sb–Bi–Se chalcogenide glasses. Physica B: Condensed Matter. 2009; 404(8–11):1553–7. Crossref.
  • Khan SA, Al-Hazmi FS, Faidah AS, Al-Ghamdi AA. Calorimetric studies of the crystallization process in a-Se75S25−xAgx chalcogenide glasses. Current Applied Physics. 2009; 9(3):567–72. Crossref.
  • Mehta N, Singh K, Kumar A. On the glass transition phenomenon in Se–Te and Se-Ge based ternary chalcogenide glasses. Physica B: Condensed Matter. 2009;404(12–13):1835–9. Crossref.
  • Abu-Sehly AA. Variation of the activation energy of crystallization in Se81.5Te16Sb2.5 chalcogenide glass: Iso-conversional analysis. Thermochimica Acta. 2009; 485(1–2):4–19. Crossref.
  • Aly KA, Othman AA, Abousehly AM. Effect of Te additions on the glass transition and crystallization kinetics of(Sb15As30Se55)100−xTex amorphous solids. Journal of Alloys and Compounds. 2009; 467 (1–2):417–23. Crossref.
  • El-Oyoun MA. Effect of wide range of heating rate on the crystallization kinetic parameters of Se77Te20Sb3 glass.Thermochimica Acta. 2009; 494(1–2):129–35. Crossref.
  • Elabbar AA. Kinetics of the glass transition in Se72Te23Sb5 chalcogenide glass: Variation of the activation energy. Journal of Alloys and Compounds. 2009; 476(1–2):125–9. Crossref.
  • Abu-Sehly AA, Alamri SN, Joraid AA. Measurements of DSC isothermal crystallization kinetics in amorphous selenium bulk samples. Journal of Alloys and Compounds. 2009; 476(1–2):348–51. Crossref.
  • Joraid AA, Abu-Sehly AA, Alamri SN. A study on isothermal kinetics of glassy Sb9.1Te20.1Se 70.8 alloy. Journal of Taibah University for Science. 2009; 2:106–17.
  • Rahim MAA, El-Korashy A, Hafiz MM, Mahmoud AZ. Kinetic study of non-isothermal crystallization of BixSe100−xchalcogenide glasses Physica B: Condensed Matter. 2008; 403(18):2956–62. Crossref.
  • Elnaeim AMA, Aly KA, Afify N, Abousehlly AM. Glass transition and crystallization kinetics of Inx(Se 0.75Te0.25)100−xchalcogenide glasses. Journal of Alloys and Compounds. 2010; 491(1–2):85–91. Crossref.
  • El-Raheem MAA, Ali HM. Crystallization kinetics determination of Pb15Ge27Se58 chalcogenide glass by using the Various Heating Rates (VHR) method. Journal of NonCrystalline Solids. 2010; 356(2):77–82. Crossref.
  • Saxena NS. Phase transformation kinetics and related thermodynamic and optical properties in chalcogenide glasses. Journal of Non-Crystalline Solids. 2004; 345–346:161–8. Crossref.
  • Shiryaev VS, Adam JL, Zhang XH. Calorimetric study of characteristic temperatures and crystallization behavior in Ge–As–Se–Te glass system. Journal of Physics and Chemistry of Solids. 2004; 65(10):1737–44. Crossref.
  • Dahshan A. Thermal stability and crystallization kinetics of new As–Ge–Se–Sb glasses. Journal of Non-Crystalline Solids. 2008; 354(26):3034–9. Crossref.
  • Soltan AS. A study of DSC non-isothermal pre-crystallization kinetics of Pb10Se90 glass using iso-conversional kinetic analysis Physica B: Condensed Matter. 2010; 405(3):965–8. Crossref.
  • Lafi OA, Imran MAA, Abdullah MK. Chemical bond approach to glass transition temperature and crystallization activation energy in Se90In10−xSnx (2 ≤ x ≤ 8) semiconducting glasses. Materials Chemistry and Physics. 2008; 108(1);109–14. Crossref.
  • Kumar S, Singh K. Calorimetric studies of Se75Te15Cd10 and Se75Te10Cd10In5 multicomponent chalcogenide glasses Physica B: Condensed Matter. 2010; 405(15):3135– 40. Crossref.
  • Soliman AA, El-Nahass MM. Glass transition behavior of binary GaxSe100−x (0⩽x⩽10) glass systems. Physica B: Condensed Matter. 2008; 403(18):13331–5. Crossref.
  • Kaidatzis A, Wachter JB, Chrissafis K, Paraskevopoulos KM, Kanatzidis MG. Crystal/glass phase change in K1− xRbxSb5S8 (x = 0.25, 0.50, 0.75) studied through thermal analysis techniques. Journal of Non-Crystalline Solids. 2008; 354(30):3643–8. Crossref.
  • Joraid AA, Alamri SN, Abu-Sehly AA. Model-free method for analysis of non-isothermal kinetics of a bulk sample of selenium. Journal of Non-Crystalline Solids. 2008; 354(28):3380–7. Crossref.
  • Lafi OA, Imran MMA, Abdullah MK. Glass transition activation energy, glass-forming ability and thermal stability of Se90I10−xSnx (x = 2, 4, 6 and 8) chalcogenide glasses. Physica B: Condensed Matter. 2007; 395(1–2):69–75. Crossref.
  • EL-Fadl AA, Hafiz MM, Wakaad MM, Aashour AA. Calorimetric studies of the crystallization process in Cu10Se90 and Cu20Se80 chalcogenide glasses Physica B: Condensed Matter. 2007; 398(1):118–25. Crossref.
  • Gang YQ, Wao W. On the activation energy of crystallization in metallic glasses. Journal of Non-Crystallization Solids.1986; 81:129–34. Crossref.
  • Rahim MAA, Hafiz MM, Mahmoud AZ. Crystallization kinetics and thermal stability in Se85-xTe15Sbx chalcogenide glasses. Phase transition. 2016; 89(11):1029–42. Crossref.
  • Satar MA, Rahim MAA, El-Korashy A. A Study of the crystallization kinetics of Ge-Se-Te glasses. International Journal of Pure and Applied Physics. 2007; 3(1):59–68.
  • Kapoor M, Thakur N. Effect of the germanium on the crystallization kinetics of Se-Te glassy alloy. Integrated Ferroelectrics. 2010; 118:53–60. Crossref.
  • Alvi MA, Study of phase separation in amorphous Se–Te–Bi material. Superlattices and Microstructures. 2011; 73:1–11. Crossref.
  • Srivastava S, Zulfequar M, Agrahari SK, Kumar S. Kinetics of crystallization in glassy Se70Te30-x Znx using DSC technique. Physica B.2008;403:3429– 33. Crossref.
  • Shukla R, Agarwal P, Kumar A. Thermal characterization of Se80-x e20Inx glasses using Iso-Conversional methods. Journal of Crystallization Process and Technology. 2012; 2:64–71. Crossref.
  • Rahim MAA, El-Korashy A Al-Ariki S. Crystallization studies on Se-Te-Cd chalcogenide glasses. Materials Transactions. 2010; 51(2):256–60. Crossref.
  • Yahia IS, Shakra AM, Fadel M, Hegab NA, Salem AM, Farid AS. Kinetics of non-isothermal crystallization of ternary Se85Te15−xSbx glassy alloys. Chalcogenide Letters. 2011; 8:453–67.
  • Patial BS, Thakura N, Tripathi SK. On the crystallization kinetics of In additive Se–Te chalcogenide glasses. Thermochimica Acta. 2011; 513:1–8. Crossref.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.