Total views : 242

Analysis of Electroencephalography (EEG) Signals using Visualization Techniques

Affiliations

  • National Institute of Technology, Raipur - 492010, Chhattisgarh, India

Abstract


The feasibility of machine learning and data mining has been recognized by past research in the analysis of biomedical device data. The proposed work analyses the biomedical Electroencephalography (EEG) device data using visualization techniques and these techniques have potential for extracting information from huge data sets. The presented work includes extraction of visual patterns using different visualization techniques. The pattern identification task is performed in several stages like outlier removal from EEG. After outlier detection data is divided into manageable segments to avoid overcrowding of data points. Then random method is applied to select a segment and identify prominent patterns by application of visual mapping techniques.

Keywords

Corrogram, EEG, Parallel Coordinates, Radar Chart, Sampling, Visual Data Mining.

Full Text:

 |  (PDF views: 200)

References


  • Shneiderman B. The eye have it: A task by data type taxonomy for information visualization. Visual Languages; 1996.
  • Telea A. Data visualization. 1st ed. Hoboken: CRC Press; 2014.
  • Koprinska I. Feature selection for brain-computer interfaces.New Frontiers in Applied Data Mining; 2009. p.106–17.
  • Lee F, Scherer R, Leeb R, Neuper C, Bischof H, Pfurtscheller G. A comparative analysis of multi-class EEG classification for brain-computer interface. 10th ComputerVision Winter Workshop (CVWW). Technical University of Graz, Austria; 2005.
  • Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnalsi B. A review of classification algorithms for EEG-based braincomputer interfaces. Journal of Neural Engineering. 2007: R1–13.
  • Uhlenküken C, Schmidt B, Streit U. Visual exploration of high-dimensional spatial data: Requirements and deficits.Computers and Geosciences. 2000; 26(1):77–85.
  • Keim DA, Mansmann F, Schneidewind J, Ziegler H.Challenges in visual data analysis. Proceedings of the Tenth International Conference on Information Visualization; 2006. 9–16.
  • Thomas, Kielman J. Challenges for visual analytics. Inf Vis.2009; 8(4):309–14.
  • Rösler O, Suendermann D. First step towards eye state prediction using EEG. Proceedings of the International Conference on Applied Informatics for Health and Life Sciences. Istanbul, Turkey; 2013.
  • Mridu S, Nagwani NK, Verma S, Shirke S. An Incremental Feature Reordering (IFR) algorithm to classify eye state identification using EEG. Information Systems Design and Intelligent Applications; 2015. p. 803–11.
  • Burrell L, Smart O, Georgoulas G, Vachtsevanos G.Evaluation of feature selection techniques for analysis of functional MRI and EEG. International Conference on Data Mining. Las Vegas, Nevada; 2007.
  • Jun W, Zhao Y. EEG signal classification with feature selection based on one-dimension real valued particle swarm optimization. mce-14; 2014.
  • Wang T, Guan S, Man K, Ting T. EEG eye state identification using incremental attribute learning with time-series classification. Mathematical Problems in Engineering; 2014. p. 1–9.
  • Saary M. Radar plots: A useful way for presenting multivariate health care data. Journal of Clinical Epidemiology.2008; 61:311–17.
  • Kandogan E. Star coordinates: A multi-dimensional visualization technique with uniform treatment of dimensions.Proceedings of the IEEE Information Visualization Symposium, Late Breaking Hot Topics; 2000. p. 9–12.
  • Yamaguchi N, Matsubara S, Momonoi F, Morikawa K, Takeyama M, Maeda Y. An attempt of radar chart expression of a self-rating scale for sleep disturbance. Psychiatry and Clinical Neurosciences .1998; 52:165–7.
  • Kosaka A, Osaku M, Watabiki Y, Hojo M, Kasezawa A, Hamao F. QOL of breast-conserved patients analyzed by radar chart. Biotherapy. 1995; 9:1023–30.
  • Minemawari Y, Kato T. The radar chart method and its analysis as a comprehensive geriatric assessment system for elderly disabled patients. Japanese Journal of Geriatric Psychiatry. 1999; 36:206–12
  • Xmdvtool home page [Internet]. Available from: http:// davis.wpi.edu/ xmdv/.
  • Lee HY, Ong HL. Visualization support for data mining.IEEE Expert. 1996; 11(5):69–75.
  • Spss diamond [Internet]. Available from: http://www.spss.com/software/diamond.
  • Rubel O, Eisen M. Pointcloudxplore: Visual analysis of 3d gene expression data using physical views and parallel coordinates. Proceedings of the Eighth Joint Eurographics / IEEE VGTC Conference on Visualization, EUROVIS’06; 2016. p. 203–10.
  • Dasgupta A, Kosara R. Adaptive privacy-preserving visualization using parallel coordinates. IEEE Transactions on Visualization and Computer Graphics. 2011; 17:2241–8.
  • Friendly M. Corrgrams: Exploratory displays for correlation matrices. Amer Statistician. 2002; 56:316–24. DOI: 10.1198/000313002533.
  • Sahu M, Nagwani N, Verma S, Shirke S. An Incremental Feature Reordering (IFR) algorithm to classify eye state identification using EEG. Information Systems Design and Intelligent Applications. 2015; 339.
  • R¨osler O, Suendermann D. First step towards eye state prediction using EEG. Proceedings of the International Conference on Applied Informatics for Health and Life Sciences, Istanbul; 2013
  • Sahu M, Sharma S, Raj V. Impact of discretization on classifiation of data using divide and conquer paradigm.International Conference on Electrical, Electronics, and Optimization Techniques; 2016.
  • Towle V, Spire J, Bolaños J, Suarez D, Tan K, Grzeszczuk R, Levin DN, Cakmur R, Frank SA. The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. ClinPhone. 1993; 86(1).
  • Estevez PA, Held CM, Holzmann CA, Perez A, Perez JP, Heiss J, Garrido M, Peirano P. Polysomnographicpattern recognition for automated classification of sleep-wakingstates in infants. Medical and Biological Engineering and Computing. 2002; 40:105–13.
  • Yeo MVM, Li X, Shen K, Wilder-Smith EPV. Can SVM be used for automatic EEG detection of drowsiness duringcar driving?” Safety Science. 2009; 47:115–24.
  • Polat K, Gunes S. Classification of epileptiform EEG usinga hybrid system based on decision tree classifier and fast Fouriertransform. Applied Mathematics and Computation.2007; 187:1017–26.
  • Sadatnezhad K, Boostani R, Ghanizadeh A. Classification of BMD and ADHD patients using their EEG signals.Expert Systems with Applications. 2011; 38:1956–63.
  • Sampling (What is it? When is it used?) Data collection tools. Quality Advisor. Pqsystems.com [Internet].Available from: http://www.pqsystems.com/qualityadvisor/ DataCollectionTools/sampling.php
  • What is data sampling? - Definition from WhatIs.com. SearchBusinessAnalytics. [Internet]. Available from: http://searchbusinessanalytics.techtarget.com/definition/ data-sampling.
  • Latham B. Sampling: What is it? 1st ed. ENGL 5377; 2007.p. 13
  • Schrack G, Choit M. Optimized relative step size random searches. Mathematical Programming, Springer Publications; 1976.
  • Baba N. Convergence of a random optimization method for constrained optimization problems. Journal of Optimization Theory and Applications. 1981; 33(4):451– 61.
  • Francisico T, Solis J, Roger J. Minimization by random search techniques. Mathematics of Operations Research; 1981.
  • Zabinsky Z. Random Search Algorithms [Internet]. 2009.Available from: http://courses.washington.edu/.
  • Gunter B, Cleveland W. Visualizing Data. Technometrics.1994; 36(3):314.
  • de Oliveira M, Levkowitz H. From visual data exploration to visual data mining: A survey. IEEE Transactions on Visualization and Computer Graphics. 2003; 9(3):378–94.
  • Kerren A, Plaisant C, Stasko J. Information visualization: State of the field and new research directions. Information Visualization. 2011; 10(4):269–70.
  • Keim D. Information visualization and visual data mining.IEEE Transactions on Visualization and Computer Graphics. 2002; 8(1):1–8.
  • Statistical Graphics for Multivariate Data. Math.yorku.ca, [Internet]. 2016. Available from: http://www.math.yorku.ca/SCS/sugi/sugi16-paper.html#H1_5:Star.
  • 1.3.3.29. Star Plot, Itl.nist.gov. [Internet]. 2016. Available from: http://www.itl.nist.gov/div898/handbook/eda/section3/ starplot.htm.
  • Chambers J, Cleveland W, Kleiner B, Tukey P. Graphical methods for data analysis. Wadsworth; 1983. p. 158–62.
  • Parallel Plots. Jmp.com [Internet]. 2016. Available from: http://www.jmp.com/support/help/Parallel_Plots.shtml.
  • Kiem DA. Information visualization and visual data mining.IEEE Transactions on Visualization and Computer Graphics. 2002; 8(1):8.
  • Blog S. Mastering parallel coordinate charts in R - Safari Blog [Internet]. 2014. Available from: Safaribooksonline.com. Available: https://www.safaribooksonline.com/ blog/2014/03/31/mastering-parallel-coordinate-charts-r/.
  • Friendly M. Corrgrams: Exploratory displays for correlation matrices. The American Statistician 56.4; 2002. p.316–24.
  • Jöreskog KG. Structural analysis of covariance and correlation matrices. Psychometrika 43.4; (1978). p. 443–77.
  • Nakazawa M. fmsb: Functions for Medical Statistics Book with some demographic data. R Package Version 0.3 4; 2012.
  • Schloerke B, et al. Ggally: Extension to ggplot2; (2011).
  • Wright K, Wright MK. Package ‘corrogram’. Analysis; 1983.p. 352–5.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.