Total views : 1097

IoT Enabled Air Quality Monitoring System (AQMS) using Raspberry Pi

Affiliations

  • School of Computing, Embedded System, SASTRA University, Tirumalaisamudram, Thanjavur - 613401, India

Abstract


Background/Objectives: Air pollution due to vehicular and industrial emission has become menace to the living beings. Due to this menace both indoor and outdoor air quality monitoring in real time has become mandatory. Methods/ Statistical Analysis: The evolution of Internet of Things (IoT) and Single Board Computers (SBC) has made real time remote monitoring as a ubiquitous process. Remote monitoring was facilitiated using classical motes in the past, which has some pitfalls like limited memory, processsing speed and complex programming strategies. This paper portrays the usage of SBC for integration of IoT with WSN for Air Quality Monitoring System (AQMS), where SBC are capable of performing even complex task with enhanced speed and reduced complexity. The integration of cloud services with SBC makes alerting process smart and realtime. Findings: With the review and realizing of immense literature in the field of WSN for air quality management, the design of sensor web node becomes essential. The evolution of SBC adds merit towards monitoring and measuring of the critical factors in centralized Air Quality Monitoring System (AQMS) in any plant. Sensor web node is proposed with commercial gas sensors for detecting the gases like CO, CO2, NH3 and NOx to monitor both indoor and outdoor air quality. The observed results are properly evaluated using ThingSpeak open source IoT platform. The integration of open source cloud services for SBC in this proposed prototype model confirms low cost, comfort, convenience and rapid prototyping for flexible AQMS. Applications/Improvements: This prototype can be easily adapted to any monitoring systems with minor changes and can be made scalable for tomorrow.

Keywords

AQMS, IoT, Raspberry Pi, SBC, ThingSpeak, WSN.

Full Text:

 |  (PDF views: 1807)

References


  • National Air Quality index. 2014. Available from: http://www.cpcb.nic.in/FINAL-REPORT_AQI_.pdf
  • Andres RJ, Fielding DJ, Marland G, Boden TA, Kumar N. Carbon dioxide emissions from fossil-fuel use. Tellus B. 1999; 51(4):759–65.
  • Mao X, Miaoy X , He Y, Zhu T, Wang J, Dongy W, et. al. Citysee: Urban CO2 monitoring with sensors. IEEE Proceedings INFOCOM; Orlando, FL. 2012. p. 1611–9.
  • Ma Y, Richards M, Ghanem M, Guo Y, Hassard J. Air pollution monitoring and mining based on sensor grid in London. Sensors. 2008; 8(6):3601–23.
  • Arvind RV, Raj RR, Raj RR, Prakash NK. Industrial automation using Wireless Sensor Networks. Indian Journal of Science and Technology. 2016; 9(8):1–8.
  • Jung YJ, Lee YK, Lee DG, Lee Y, Nittel S, Beard K, et al. Design of sensor data processing steps in an air pollution monitoring system. Sensors. 2011; 11(12):11235–50.
  • Bagula A, Zennaro M, Inggs G, Scott S, Gascon D. Ubiquitous Sensor Networking for development (USN4d): An application to pollution monitoring. Sensors. 2012; 12(1):391–414.
  • Felstead TJ. The use of a road side remote sensing device to encourage voluntary vehicle emissions related maintenance. SEIG Conference; London’07. 2007. p. 1–18.
  • Jayavel K, Nagarajan V. Survey of migration, integration and interconnection techniques of data centric networks to Internet - Towards Internet of Things (IoT). Indian Journal of Science and Technology. 2016 Mar; 9(11):1–8.
  • Vujovic V, Maksimovic M. Raspberry Pi as a sensor web node for home automation. Computers and Electrical Engineering. 2015; 44:153–71.
  • Maksimovic M, Vujovic V, Davidovic N, Milosevic V, Perisic B. Raspberry Pi as Internet of Things hardware: Performances and constraints. IcETRAN Conference; Vrnjacka banja, Serbia. 2014. p. 1–6.
  • Christin D, Reinhardt A, Mogre PS, Steinmetz R. Wireless Sensor Networks and the Internet of Things: Selected challenges. 8th GI/ITG/ KuVS; University of Darmstadt, Germany,. 2009. p. 31–3.
  • Alcaraz C, Najera P, Lopez J, Roman R. Wireless Sensor Networks and the Internet of Things: Do we need a complete integration? 1st International Workshop on the Security of the Internet of Things, (Select’10); 2010.
  • Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of Things (IoT): A vision, architectural elements and future directions. Future Generation Computer Systems. 2013; 29(7):1645–60.
  • A brief history of single board computers. 2014. Available from: http://www.newark.com/wcsstore/ExtendedSitesCatalogAssetStore/cms/asset/pdf/americas/common/NE14-ElectronicDesignUncovered-Dec14.pdf
  • Air quality index: A guide to air quality and your health. 2014. Available from: https://www3.epa.gov/airnow/aqi_brochure_02_14.pdf

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.