Total views : 207

The Attractors of Fuzzy Super Iterated Function Systems

Affiliations

  • Department of Mathematics, Jaypee Institute of Information Technology, A–10, Sector–62, Noida – 201309, Uttar Pradesh, India
  • Department of Mathematics, Jaypee Institute of Information Technology, A–10, Sector–62, Noida – 201309, Uttar Pradesh

Abstract


Objectives: To study the iterated multi-function systems in the framework of fuzziness. Methods/Statistical Analysis: The concept of fuzziness is used to define a new class of superfractals as attractors of fuzzy super iterated function systems. Findings: The fuzzy super iterated function systems are defined and some existence theorems on fractals in fuzzy metric spaces are established. Applications/Improvements: Our results extend and generalize some of the recent results reported in the literature in fuzzy settings.

Keywords

Fractal Space, Fuzzy Metric Space, Fuzzy Contraction, Fuzzy Hutchinson-Barnsley Operator, Fuzzy Superfractal.

Full Text:

 |  (PDF views: 79)

References


  • Zadeh LA. Fuzzy sets. Information and Control, Elsevier, ScienceDirect. 1965 Jun; 8(3):338–53. Crossref.
  • Kramosil I, Michálek J. Fuzzy metrics and statistical metric spaces. Kybernetika. 1975; 11(5):336–44.
  • George A, Veeramani P. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, Elsevier, ScienceDirect. 1994 Jun 24; 64(3):395–9. Crossref.
  • George A, Veeramani P. On some results of analysis for fuzzy metric spaces. Fuzzy Sets and Systems, Elsevier, ScienceDirect. 1997 Sep 16; 90(3):365–8. Crossref.
  • Grabiec M. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, Elsevier, ScienceDirect. 1988 Sep; 27(3):385– 9. Crossref.
  • Rodriguez–Lopez J, Romaguera S. The Hausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems, Elsevier, ScienceDirect. 2004 Oct 16; 147(2):273–83. Crossref.
  • Farnoosh R, Aghajani A, Azhdari P. Contraction theorems in fuzzy metric space. Chaos, Solitons and Fractals, Elsevier, ScienceDirect. 2009 Jul 30; 41(2):854–8. Crossref.
  • Gregori V, Romaguera S. Some properties of fuzzy metric spaces. Fuzzy Sets and Sys-tems, Elsevier, ScienceDirect. 2000 Nov 1; 115(3):485–9. Crossref.
  • Gregori V N, Minana JJ, Morillas S. Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, Elsevier, ScienceDirect. 2012 Oct 1; 204:71–85. Crossref.
  • Mandelbrot BB. The fractal geometry of nature/Revised and enlarged edition. New York: WH Freeman and Co; 1983 Jan. p. 1–495.
  • Sedghi S, Altun I, Shobe N. Coupled fixed point theorems for contractions in fuzzy metric spaces. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, ScienceDirect. 2010 Feb 1; 72(3–4):1298–304.
  • Gupta V, Kanwar A. Fixed point theorem in fuzzy metric spaces satisfying E.A property. Indian Journal of Science and Technology. 2012 Dec; 5(12):3767–9.
  • Gupta V, Deep R. Coupled fixed points results for nonlinear contractions in quasi-ordered metric spaces. Indian Journal of Science and Technology. 2015 Jul; 8(13):1–7. Crossref.
  • Kumari PS, Ramana ChV, Zoto K, Panthi D. Fixed point theorems and generalizations of dislocated metric spaces. Indian Journal of Science and Technology. 2015 Feb; 8(S3):154–8.
  • Prasad B, Sahni R. Common fixed point theorems for ψ-weakly commuting maps in fuzzy metric spaces. Acta et Commentationes Universitatis Tartuensis de Mathematica (ACUTM). 2013; 17(2):117–25. Crossref.
  • Barnsley MF. Fractals everywhere. USA: Academic Press; 1993.
  • Barnsley M, Hutchinson J, Stenflo O. A fractal valued random iteration algorithm and fractal hierarchy. Fractals. 2005 Jun; 13(2):111–46. Crossref.
  • Barnsley MF. Super fractals. New York: Cambridge University Press; 2006.
  • Barnsley MF, Hutchinson JE, Stenflo Ö. V-variable fractals: fractals with partial self similarity. Advances in Mathematics, Elsevier, ScienceDirect. 2008 Aug 20; 218(6):2051–88. Crossref.
  • Barnsley M, Hutchinson JE, Stenflo Ö. V-variable fractals: dimension results. Forum Mathematicum, 2012 Jan; 24(3):445–70. Crossref.
  • Edgar G. Measure, topology, and fractal geometry. New York: Springer Science and Business Media; 2008. Crossref.
  • Falconer K. Techniques in fractal geometry. Chichester: John Wiley and Sons; 1997 Mar. p. 274.
  • Kigami J. Analysis on fractals. UK: Cambridge University Press; 2001. p. 1–228. Crossref-1. Crossref-2.
  • Peitgen HO, Saupe D. The science of fractal images. New York: Springer-Verlag; 1988. p. 242.
  • Peitgen HO, Jürgens H, Saupe D. Fractals for the classroom: part two: complex systems and mandelbrot set. New York: Springer-Verlag; 1992. p. 473.
  • Singh SL, Prasad B, Kumar A. Fractals via iterated functions and multifunctions. Chaos, Solitons and Fractals, Elsevier, ScienceDirect. 2009 Feb 15; 39(3):1224–31. Crossref.
  • Prasad B, Katiyar K. Fractals via Ishikawa iteration. Control, Computation and Information Systems, Communications in Computer and Information Science, Springer. 2011; 140(2):197–203. Crossref.
  • Hutchinson J. Fractals and self similarity. Indiana University of Mathematics Journal. 1981; 30(5):713–47. Crossref.
  • Easwaramoorthy D, Uthayakumar R. Analysis on fractals in fuzzy metric spaces. Fractals. 2011 Sep; 19(3):379–86. Crossref.
  • Uthayakumar R, Easwaramoorthy D. Hutchinson-Barnsley operator in fuzzy metric spaces. World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering. 2011; 5(8):1418–22.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.