Total views : 361

Green Database Design Model in Software Development Life Cycle Phase

Affiliations

  • Department of Computer Science, Karpagam University, Coimbatore – 641021, Tamil Nadu, India
  • Department of Information Techonology, Karpagam University, Coimbatore – 641021, Tamil Nadu, India

Abstract


Background/Objectives: This paper proposes to introduce a Green Software Database Design Model and to create the awareness to overcome the energy consumption issues while designing the database in the prevailing state of the world. Methods/Statistical Analysis: The main aspect of the work is to contemplate the energy consumption during the design phase of the database. Findings: This approach is concerned with the database designing using Green Computing Technique to reduce the power utilization pattern of server at different work load conditions. The energy consumption database design is subsequently designed to estimate the collision of software applications based on their source utilization. Improvement/Application: The work is validated on the side of the desktop and the server side. This experiment demonstrates the effectiveness of the database design that provides the relevant information about the energy utilization of software application design on the database in software engineering.

Keywords

Database Design, Energy Consumption, Green Software Engineering, Software Application, Software Engineering

Full Text:

 |  (PDF views: 332)

References


  • Capra E, Francalanci C, Slaughter SA. Measuring application software energy efficiency. IT Prof. 2012; 14(2):54–61. Doi:10.1109/MITP.2012.39.
  • Sierszecki K, Mikkonen T, Steffens M, Fogdal T, Savolainen J. Green software: Greening what and how much? IEEE Softw. 2014; 31:64–8. Doi:10.1109/MS.2014.
  • Zhang C, Hindle A. The impact of user choice on energy consumption. IEEE Softw. 2014; 31(3):69–75. Doi:10.1109/ MS.2014.27.
  • Gong L, Xie J, Li X, Deng B. Study on energy saving strategy and evaluation method of green cloud computing system. 2013 8th IEEE Conference on, Industrial Electronics and Applications (ICIEA). 2013. P. 483–8. Doi:10.1109/ ICIEA.2013.6566417.
  • Dick M, Naumann S. Enhancing software engineering processes towards sustainable software product design. Proceedings of the 24th International Conference EnviroInfo: Integration of Environmental Information in Europe, 2010. P. 706–15.
  • Chaudhary S, Murala DP, Shrivastava VK. Green Data Base. Global Journal of Business Management and Information Technology. 2011; 1(2):105–11 © Research India Publications. Available from: http://www.ripublication.com
  • Bener AB, Miranskyy A, Raspudic S. Deploying and Provisioning Green Software, in IEEE Software. 2014 MayJun; 31(3):76–8. Doi: 10.1109/MS.2014.59.
  • Sahin C, Cayci F, Clause J, Kiamilev F, Pollock L, Winbladh K. Towards power reduction through improved software design, Energytech, 2012 IEEE, Cleveland, OH. 2012; 1–6. Doi: 10.1109/EnergyTech.2012.6304705.
  • Wilde T, Auweter A, Shoukourian H. The 4 Pillar Framework for energy efficient HPC data centers, Computer Science - Research and Development. 2013; 1. Doi: 10.1007/s00450013-0244-6.
  • Mardamutu K, Aik Joon RAL, Jegatheesan J, Ponnusamy V, Leong YM. A Critical Analysis of Green Database System for Energy Efficiency and Green Computing. International Symposium on Mathematical Sciences and Computing Research 2013 (iSMSC 2013), Perak, MALAYSIA. Paper ID.:CS_07. 2013 Dec 6-7.
  • Procaccianti G, Fernandez H, Lago P. Empirical evaluation of two best practices for energy-efficient software development. Journal of Systems and Software. 2016 Jul; 117:185–98. ISSN 0164-1212, Available from: http://dx.doi.org/10.1016/j.jss.2016.02.035. (http://www.sciencedirect.com/science/article/pii/S0164121216000777)
  • Betz S, Becker C, Chitchyan R, Duboc L, Easterbrook S, Penzenstadler B, Seyff N, Venters CC. Sustainability Debt: A Metaphor to Support Sustainability Design Decisions 4th International Workshop on Requirements Engineering for Sustainable Systems (RE4SuSy),ISSN:1613-0073,Ottawa, Canada. 2015 Aug.
  • Choudhary S. A Survey on Green Computing Techniques. (IJCSIT) International Journal of Computer Science and Information Technologies. 2014; 5(5):6248–52. ISSN:09759646.
  • Lang W, Kandhan R, Patel JM. Rethinking Query Processing for Energy Efficiency: Slowing Down to Win the Race. IEEE Data Eng Bull. 2011. Available from: adrem.ua.ac.be
  • Becker C, Chitchyan R, Duboc L, Easterbrook S, Penzenstadler B, Seyff N, Colin C. Venters. 2015. Sustainability design and software: the karlskrona manifesto. Proceedings of the 37th International Conference on Software Engineering - Volume 2 (ICSE ‘15), IEEE Press, Piscataway, NJ, USA, 2015; 2. p. 467–76.
  • Shankar S, Nehme R, Aguilar-Saborit J, Chung A, Elhemali M, Halverson A, Robinson E, Subramanian MS, DeWitt D, Galindo-Legaria C. Query optimization in microsoft SQL server PDW. Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data (SIGMOD ‘12). ACM, New York, NY, USA. 2012. p. 767–76.
  • Mohan Kumar M, Anand Kumar M. An Empirical Study on Green and Sustainable Software Engineering. Advances in Software Engineering and Systems. Available from: http://www.wseas.us/e-library/conferences/2015/Dubai/ SEPADS/SEPADS-11.pdf ISBN: 978-1-61804-277-4.
  • Mohan Kumar M, Anand Kumar M. A Green It Star Model Approach For Software Development Life Cycle. International Conference on Recent Trends in Engineering Science And Management (ICRTESM -2015). Jawaharlal Nehru University, New Delhi – India. 2015 Mar 15. ISSN (online): 2348 – 7550.
  • Nehme R, Bruno N. Automated partitioning design in parallel database systems. Proceedings of the 2011 ACM SIGMOD International Conference on Management of data (SIGMOD ‘11). ACM, New York, NY, USA, 2011. p. 1137– 48. DOI=http://dx.doi.org/10.1145/1989323.1989444
  • Cheng Chen , Bingsheng He , Xueyan Tang, Changbing Chen , Yubao Liu,” Green Databases Through Integration of Renewable Energy” 6th Biennial Conference on Innovative Data Systems Research(CIDR 13),jan69,2013,doi=10.1.1.366.2184 Asilomar, California, USA.
  • Rashid M, Ardito L, Torchiano M. Energy Consumption Analysis of Algorithms Implementations. ESEM, 2015, 2015 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM), 2015 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). 2015; 1–4. Doi:10.1109/ESEM.2015.7321198.
  • Kern E, Dick M, Naumann S, Filler A. Labelling Sustainable Software Products and Websites: Ideas, Approaches, and Challenges. booktitle = Atlantis Press. publisher = Atlantis Press. ISBN 978-94-62520-92-9. 2015; 82–91.
  • Nirmalraj D, Santhosh N. Model to Predict Schedule Variance in Software Application Development Projects. Indian Journal of Science and Technology. 2016 Feb; 9(7). Doi: 10.17485/ijst/2016/v9i7/85751.
  • Available from: https://technet.microsoft.com/en-us/ library/cc181325.aspx
  • Gupta M, Singh P, Rani S. Optimizing Physical Layer Energy Consumption for Reliable Communication in Multi-hop Wireless Sensor Networks. Indian Journal of Science and Technology. 2015 Jul; 8(13). Doi:10.17485/ ijst/2015/v8i13/54605.
  • Zayandehroodi H, Hamzehbabaei, Eslami M. Optimization of energy consumption in cooperative wireless network using quadratic programming. Indian Journal of Science and Technology. 2015 Dec; 8(35). Doi:10.17485/ijst/2015/ v8i35/87396.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.