Total views : 206

Anatomical and Physiological Responses of Four Quinoa Cultivars to Salinity at Seedling Stage

Affiliations

  • Catedra de Fisiologia Vegetal, Facultad de Ciencias Naturales e IML, Miguel Lillo 205, San Miguel de Tucumán, T4000ILI, Tucuman, Argentina
  • Catedra de Fisiologia Vegetal, Facultad de Ciencias Naturales e IML, Miguel Lillo 205, San Miguel de Tucumán, T4000ILI, Tucuman,, India
  • Instituto de Morfologia Vegetal, Fundacon Miguel Lillo, Miguel Lillo 205, San Miguel de Tucumán, T4000ILI, Tucumán, Argentina
  • Instituto Ecología Vegetal, Fundación Miguel Lillo, Miguel Lillo 205, San Miguel de Tucumán, T4000ILI, Tucumán, Argentina
  • Departamento de Producción Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Litoral, Kreder 2805, Esperanza 3080, Santa Fe,, Argentina

Abstract


Objectives: Salinity is one of the most important environmental stress factors that limits both seed germination and
seedling develop. Seedling stage is the most susceptible stage of plants to salt stress. The aim of this work is to study
the effect of salt stress on anatomical and physiological features of cotyledons and roots of the seedlings of four quinoa
cultivars (Witulla, Wariponcho, Pasankalla and CICA). Methods/ Statistical Analysis: Seed germination and seedling
growth was carried out under 0 and 200 mM NaCl during 10 days. Root length and diameter, and root proton extrusion
were measured. Soluble sugars and proline concentrations were determined in both cotyledons and roots. Anatomical
attributes of cotyledons (adaxial and abaxial stomatal area and density, palisade and spongy cell layers, palisade cell
density) and roots (stele diameter and surface, metaxylem vessel diameter) were also analyzed. Findings: Salt stress
caused physiological and anatomical changes in cotyledons and roots. Sucrose, glucose and fructose concentrations were
more affected in cotyledons than in roots of salt-treated seedlings. Proline accumulation was more affected in roots. Saline
stress affected differentially the anatomical attributes of quinoa cultivars. Application/Improvements: Quinoa seedlings
when subjected to salt stress are able to develop a set of anatomical, physiological and biochemical adaptive mechanisms
which seem to occur at different combinations among quinoa cultivars, but giving similar abilities to cope with the excess
of salt and survive under extreme conditions.


Keywords

Cotyledon, Proline, Quinoa, Root, Salinity, Sugars

Full Text:

 |  (PDF views: 202)

References


  • Rengasamy P. World salinization with emphasis on Australia. Journal of Experimental Botany. 2006; 57(5):1017–23. doi:10.1093/jxb/erj108.
  • Puchulu ME. Los materiales parentales de los suelos y su relación con el comportamiento de las sales, en el sudeste de la provincia de Tucumán. Tesis de Doctorado en Geología, Universidad Nacional de Tucumán; 2010.
  • Mashali AM. FAO global network in soil management for sustainable use of salt affected soils. International Workshop, Izmir, Turkey; 1999. p. 32.
  • Flowers TJ, Colmer TD. Salinity tolerance in halophytes.New Phytologist. 2008; 179(4):945–63. doi:10.1111/j.14698137.2008.02531.x.
  • González JA, Roldán A, Gallardo M, Escudero T, Prado FE. Quantitative determinations of chemical compounds with nutritional value from inca crops: Chenopodium quinoa (quinoa). Plant Foods for Human Nutrition. 1989; 39(4):331–7. doi:10.1007/BF01092070.
  • Jacobsen SE. The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International.2003; 19(1–2):167–77. doi:10.1081/FRI-120018883.
  • Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen SE. Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil. 2012; 357(1):117–29. doi:10.1007/ s11104-012-1133-7.
  • Morales AJ, Bajgain P, Garver Z, Maughan PJ, Udall JA.Physiological responses of Chenopodium quinoa to salt stress. International Journal of Plant Physiology and Biochemistry. 2011; 3(6):219–32.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology. 2008; 59(1):651–81.doi:10.1146/annurev.arplant.59.032607.092911.
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology.2000; 51(1):463–99. doi:10.1146/annurev.arplant.51.1.463.
  • Zhang JL, Shi H. Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research. 2013; 115(1):1–22. doi:10.1007/s11120-013-9813-6.
  • Hameed M, Ashraf M, Ahmad MSA, Naz N. Structural and functional adaptations in plants for salinity tolerance. In:Plant Adaptation and Phytoremediation. Ashraf M, Ozturk M, Ahmad MSA, editors. Berlin: Springer Verlag; 2010. p.151–70. doi:10.1007/978-90-481-9370-7_8.
  • Lambers H, Chapin III SF, Pons TL. Plant physiological ecology. New York: Springer Verlag; 2008. doi:10.1007/9780-387-78341-3.
  • Johansen DA. Plant microtechniques. 1st ed, MacGrawHill Book Company Inc.: New York; 1940.
  • Rosa M, Hilal M, González JA, Prado FE. Changes in soluble carbohydrates and related enzymes induced by low temperature during early developmental stages of quinoa (Chenopodium quinoa) seedlings. Journal of Plant Physiology. 2004; 161(6):683–9. doi:10.1078/0176-161701257.
  • Roe JH, Papadopoulos NM. The determination of fructose6-phosphate and fructose-l, 6-diphosphate. Journal of Biological Chemistry. 1954; 210(2):703–7.
  • Cardini CE, Leloir LF, Chiriboga J. The biosynthesis of sucrose.Journal of Biological Chemistry. 1955; 214(1):149–55.
  • Jorgensen OS, Andersen B. An improvedglucose-oxidase-peroxidase-coupled assay for b-fructofuranosidase activity. Analytical Biochemistry. 1973;53(1):141–5. doi:10.1016/0003-2697(73)90415-6.
  • Ting SV, Rouseff LR. Proline content in Florida frozen concentrated orange juice and canned grapefruit juice.Proceedings of the Florida State Horticultural Society.1979; 92(1):143–5.
  • Chen SL, Chen CH T, Kao H. Acidification of deionized water by roots of intact rice seedlings. Plant and Cell Physiology. 1990; 31(5):569–73.
  • Ola HAE, Reham EF, Eisa SS, Habib SA. Morpho-anatomical changes in salt stressed Kallar grass (Leptochloa fusca L.Kunth). Research Journal of Agriculture and Biological Sciences. 2012; 8(2):158–66.
  • Salas JA, Sanabria ME, Pire R. Variación en el índice y la densidad estomática en plantas de tomate (Lycopersicon esculentum Mill.) sometidas a tratamientos salinos.Bioagro. 2001; 13(3):99–104.
  • Noman A, Ali Q, Hameed M, Mehmood T, Iftikhar T.Comparison of leaf anatomical characteristics of Hibiscus rosa-sinensis grown in Faisalabad region. Pakistan Journal of Botany. 2014; 46(1):199–206.
  • Yang L., Han M, Zhou G, Li J. The changes of water-use efficiency and stoma density of Leymus chinensis along Northeast China transect. Acta Ecologica Sinica. 2007; 27(1):16–24. doi:10.1016/S1872-2032(07)60006-7.
  • Naz N, Rafique T, Hameed M, Ashraf M, Batool R, Fatima S. Morpho-anatomical and physiological attributes for salt tolerance in sewan grass (Lasiurus scindicus Henr.) from Cholistan Desert, Pakistan. Acta Physiologiae Plantarum.2014; 36(11):2959–74. doi:10.1007/s11738-014-1668-8.
  • Nandy (Datta) P, Das S, Ghose M. Relation of leaf micromorphology with photosynthesis and water efflux insome Indian mangroves. Acta Botanica Croatica. 2005; 64(2):331–40.
  • Xie S, Luo X. Effect of leaf position and age on anatomical structure, photosynthesis, stomatal conductance and transpiration of Asian pear. Botanical Bulletin of Academia Sinica. 2003; 44(4):297–303.
  • Kano Y, Fukuoka N. Comparison of cell size and sugar accumulation in melons (Cucumis melo L.) grown early or late in summer. Environmental Control in Biology. 2006; 44(2):93–102. doi:10.2525/ecb.44.93.
  • Nakata PA. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Science.2003; 164(6):901–9. doi:10.1016/S0168-9452(03)00120-1.
  • Bhargava A, Srivastava S. Quinoa: botany, production and uses. CABI: Oxfordshire; 2013. doi:10.1079/978178064226 0.0000.
  • Rewald B, Shelef O, Ephrath JE, Rachmilevitch S, Adaptive plasticity of salt-stressed root systems. In: Ecophysiology and responses of plants under salt stress. Ahmad P, Azooz MM, Prasad MNV, editors. Springer: New York; 2013. p.169–202. doi:10.1007/978-1-4614-4747-4_6.
  • Céccoli G, Ramos JC, Ortega LI, Acosta JM, Perreta MG.Salinity induced anatomical and morphological changes in Chloris gayana Kunth roots. Biocell. 2011; 35(1):9–17.
  • Hariadi Y, Marandon K, Tian Y, Jacobsen SE, Shabala S.Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany. 2011; 62(1):185–93. doi:10.1093/ jxb/erq257.
  • Ruiz-Carrasco K, Antognoni F, Coulibaly AK, Lizardi S, Covarrubias A, Martínez EA. Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry. 2011; 49(11):1333–41. doi:10.1016/j.plaphy.2011.08.005.
  • Marschner H. Mineral nutrition of higher plants. 2nd ed.Academic Press: New York; 2002.
  • Reinhardt DH, Rost TL. Salinity accelerates endodermal development and induces an exodermis in cotton seedling roots. Environmental and Experimental Botany. 1995; 35(4):563–74. doi:10.1016/0098-8472(95)00015-1.
  • Junghans U, Polle A, Düchting P, Weiler E, Kuhlman B, Gruber F Teichmann T. Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology.Plant, Cell and Environment. 2006; 29(8):1519–31.doi:10.1111/j.1365-3040.2006.01529.x.
  • Sengupta S, Majumder AL. Physiological and genomic basis of mechanical-functional trade-off in plant vasculature.Frontiers in Plant Science. 2014; 5. doi:10.3389/ fpls.2014.00224.
  • Munns R. Comparative physiology of salt and water stress. Plant, Cell and Environment. 2002; 25(2):239–50.doi:10.1046/j.0016-8025.2001.00808.x.
  • Valenti GS, Melone L, Orsi O, Rivero F. Anatomical changes in Prosopis cineraria (L.) Druce seedlings growing at different levels of NaCl salinity. Annals of Botany. 1992; 70(5):399–404. doi:10.1093/oxfordjournals.aob.a088494.
  • Boughalleb F, Denden M, Ben Tiba B. Anatomical changes induced by increasing NaCl salinity in three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea.Acta Physiologiae Plantarum. 2009; 31(5):947–60.doi:10.1007/s11738-009-0310-7.
  • Reinoso H, Sosa L, Ramírez L, Luna V. Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae). Canadian Journal of Botany. 2004; 82(5):618–28. doi:10.1139/b04-040.
  • Enstone DE, Peterson CA, Ma F. Root endodermis and exodermis: Structure, function, and responses to the environment. Journal of Plant Growth Regulation. 2003; 21(4):335–51. doi:10.1007/s00344-003-0002-2.
  • Grigore MN, Toma C. Histo-anatomical strategies of Chenopodiaceae halophytes: Adaptive, ecological and evolutionary implications. WSEAS Transactions on Biologyand Biomedicine. 2007; 12(4):204–18.
  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research.2015; 22(6):4056–75. doi:10.1007/s11356-014-3739-1.
  • Farkhondeh R, Nabizadeh E, Jalilnezhad N. Effect of salinity stress on proline content, membrane stability and water relations in two sugar beet cultivars. International Journal of AgriScience. 2012; 2(5):385–92.
  • Wang X, Chang L, Wang B, Wang D, Li P, Wang L.Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Molecular and Cellular Proteomics. 2013; 12(8):2174–95. doi:10.1074/mcp.M112.022475.
  • Shabala L, Mackay A, Tian Y, Jacobsen AE, Zhou D, Shabala S. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum. 2012; 146(1):26–38. doi:10.1111/j.1399-3054.2012.01599.x.
  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE. Soluble sugars: metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signaling and Behavior. 2009; 4(5):388–93. doi:10.4161/ psb.4.5.8294.
  • Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S. Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa.Annals of Botany. 2015; 115(3):481–94. doi:10.1093/aob/ mcu219.
  • Bonales-Alatorre E, Pottosin I, Shabala L, Chen ZH.Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa. International Journal of Molecular Sciences. 2013; 14(5):9267–85. doi:10.3390/ijms14059267.
  • Gheraibia H, Souiki L, Bennoua S, Djebar MR. Comparative study of the biochemical and physiological mechanisms of two varieties of durum wheat (Triticum durum L.) subject to salt stress. Indian Journal of Science and Technology.2016; 9(7):1–11.
  • Hokmalipour S. Effect of salinity and temperature on seed germination and seed vigor index of chicory (Chichorium intybus L.), cumin (Cuminium cyminium L.) and fennel (Foeniculum vulgare). Indian Journal of Science and Technology. 2015; 8(35):1–9. doi:10.17485/ijst/2015/ v8i35/85914.

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.