Total views : 309

Towards Analog Design Automation using Evolutionary Algorithm: A Review


  • School of Computing, Information Communication Technology, SASTRA University, Thirumalaisamudram, Thanjavur - 613401, Tamil Nadu, India


Analog circuits are the most important parts in many Integrated Circuit (IC) design. This paper reviews the basic concepts in analog design automation using evolutionary algorithm. Analog design problem is a multi objective problem; this can be solved by Evolutionary computation methods. Computation methods provide the set of feasible solutions for the optimal circuit design of analog integrated circuits. It is necessary to integrate both analog and digital in a single chip for real world communication. Due to system level integration we need analog design automation tool for IC design. This paper summarized recent start of art in analog optimization and also lists the survey of main people working in this field. Finally, we listed several open research problem to improve the analog design automation for analog IC using evolutionary computation.


Analog Design Automation, Analog Integrated Circuits, Evolutionary Computation, Multi Objective.

Full Text:

 |  (PDF views: 337)


  • Gielen GGE, Rutenbar RA. Computer-aided design of analog and mixed-signal integrated circuits. Proceedingsof the IEEE [Internet]. 2000; 88(12):1825–54.
  • Prabhakaran G, Kannan V. Design and analysis of high gain, low power and low voltage a-Si TFT based Operational Amplifier. Indian Journal of Science and Technology. 2015; 8(16):1-10.
  • Nicosia G, Rinaudo S, Sciacca E. An evolutionary algorithm-based approach to robust analog circuit design using constrained multi-objective optimization. Knowledge-Based Systems. 2008; 21(3):175–83.
  • Greenwood GW, Tyrrell AM. New Jersey: John-Wiley & Sons Inc: Introduction to Evolvable Hardware. 2007.
  • Barros M, Guilherme J, Horta N. Analog circuits optimization based on evolutionary computation techniques. Integration the VLSI Journal. 2010; 43(1):136–55.
  • Makris CA, Toumazou C. Analog IC design automation: part II - automated circuit correction by qualitative reasoning. IEEE Transactionson Comput Design Integrated Circuits Systems. 1995; 14(2):239–54.
  • Toumazou C, Makris CA. Analog IC design automation. I. Automated circuit generation: new concepts and methods. IEEE Transactionson Computer-Aided Design Integrated Circuits Systems. 1995; 14(2):218–38.
  • Degrauwe MGR, Nys O, Dijkstra E, Rijmenants J. IDAC: An Interactive Design Tool for Analog CMOS Circuits. IEEE Journal of Solid-State Circuits. 1987; 22(6):1106–16.
  • Lourenco N, Horta N. GENOM-POF: Multi-Objective Evolutionary Synthesis of Analog ICs with Corners Validation. Proceedings of the Fourteenth International Conference on Genetic Evolutionary Computation [Internet]. 2012; p. 1119–26.
  • Horta N. Analogue and mixed-signal systems topologies exploration using symbolic methods. Analog Integrated Circuits and Signal Processing. 2002; 31(2):161–76.
  • Koh HY, Sequin CH, Gray PR. OPASYN: A compiler for CMOS operational amplifiers. IEEE Transactionson Computer Design Integrated Circuits and Systems. 1990; 9(2):113–25.
  • Harvey JP, Elmasry MI, Leung B. STAIC: An Interactive Framework for Synthesizing CMOS and BiCMOS Analog Circuits. IEEE Transactionson Computer-Aided Design Integrated Circuits Systems. 1992; 11(1):1402–17.
  • Maulik PC, Carley LR, Rutenbar RA. Integer programming based topology selection of cell-level analog circuits. IEEE Transactions on Computer-Aided Design Integrated Circuits Systems. 1995; 14(4):401–12.
  • Maulik PC, Carley LR, Allstot DJ. Sizing of cell-level analog circuits using constrained optimization techniques. IEEE Journal of Solid-State Circuits. 1993; 28(3):233–41.
  • Matsukawa K, Morie T, Tokunaga Y, Sakiyama S, Mitani Y, Takayama M, et al. Design methods for pipeline & delta-sigma A-to-D converters with convex optimization. Yokohama: Proc Asia South Pacific Design Automation Conference, ASP-DAC'09. 2009; p. 690–95.
  • Hershenson MDM, Boyd SP, Lee TH. GPCAD: a tool for CMOS op-amp synthesis. 1998 IEEE/ACM International Conference on Computer Design. 1998; p. 296-303.
  • Meng KH, Pan PC, Chen HM. Integrated hierarchical synthesis of analog/RF circuits with accurate performance mapping. Santa Clara, CA: Proceedings of the 12th International Symposium on Quality Electronic Design, ISQED' 2011. 2011; p.1-8.
  • Torralba A, Chavez J, Franquelo LG. FASY: A fuzzy-logic based tool for analog synthesis. IEEE Transactionson Computer-Aided Design Integrated Circuits Systems. 1996; 15(7):705–15.
  • Gielen GGE, Walscharts HCC, Sansen WMC. Analog circuit design optimization based on symbolic simulation and simulated annealing. IEEE Journal of Solid-State Circuits. 1990; 25(3):707-13.
  • Ochotta ES, Rutenbar RA, Carley LR. Synthesis of high-performance analog circuits in ASTRX/OBLX. IEEE Transactionson Computer Design Integrated Circuits Systems. 1996; 15(3):273–94.
  • Doboli A, Dhanwada N, Nunez-Aldana A, Vemuri R. A two-layer library-based approach to synthesis of analog systems from VHDL-AMS specifications. ACM Transactions on Design Automation Electronic Systems. 2004; 9(2):238–71.
  • Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science. 1983; 220(4598):671–80.
  • Nye W, Riley DC, Sangiovanni-Vincentelli A, Tits AL. DELIGHT.SPICE: an optimization-based system for the design of integrated circuits. IEEE Transactions on Computer Design Integrated Circuits Systems. 1988; 7(4):501-19.
  • Lin C-W, Sue P-D, et al. A Bias-Driven Approach for Automated Design of Operational Amplifiers. Hsinchu: 2009 International Conference on VLSI Design, Automation Test, VLSI-DAT'09. 2009; p. 118-21.
  • Medeiro F, Fernandez FV, Dominguez-Catro R, et al. A statistical optimization-based approach for automated sizing of analog cells. IEEE/ACM International Conference on Computer-Aided Design. 1994; p. 594-97.
  • Castro-Lopez R, Guerra O, Roca E, Fernandez FV. An integrated layout-synthesis approach for analog ICs. IEEE Transactions on Computer Design Integrated Circuits Systems. 2008; 27(7):1179–89.
  • Barros M, Guilherme J, Horta N. GA-SVM optimization kernel applied to analog IC design automation. Nice: Proc IEEE International Conference on Electronics Circuits, and Systems. 2006; p. 486–89.
  • Alpaydin G, Balkir S, Dundar G. An evolutionary approach to automatic synthesis of high-performance analog integrated circuits. IEEE Transactions on Evolutionary Computation. 2003; 7(3):240–52.
  • Santos-Tavares R, Paulino N, Higino J, Goes J, Oliveira JP. Optimization of multi-stage amplifiers in deep-submicron CMOS using a distributed/parallel genetic algorithm. Seattle, WA: Proceedings - IEEE International Symposium on Circuits and Systems. 2008; p. 724–27.
  • Krasnicki M, Phelps R, Rutenbar RA, Richard Carley L. MAELSTROM: efficient simulation-based synthesis for custom analogcells. New Orleans, Louisiana: Proc 1999 Des Autom Conference. 1999; p. 945–50.
  • Phelps R, Krasnicki M, Rutenbar RA, Richard Carley L, Heliums JR. Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search. IEEE Transactionson Computer-Aided Design Integrated Circuits Systems. 2000; 19(6):703–17.
  • Sripramong T, Toumazou C. The invention of CMOS amplifiers using genetic programming and current-flow analysis. IEEE Transactionson Computer-Aided Design Integrated Circuits Systems. 2002; 21(11):1237–52.
  • Koza JR, Bennett FH, Andre D, Keane MA, Dunlap F. Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Transactions on Evolutionary Computing. 1997; 1(2):109–28.
  • Yuan H, He J. Evolutionary design of operational amplifier using variable-length differential evolution algorithm. Taiyuan: 2010 International Conference on Computer Application Systems Modelling (ICCASM' 2010). 2010; p. 610 –14.
  • Gupta H, Ghosh B. Analog Circuits Design Using Ant Colony Optimization. International Journal of Electronics, Computer and Communications Technologies. 2012; 2(3):9–21.
  • Benhala B, Ahaitouf A, Fakhfakh M, Mechaqrane A. New Adaptation of the ACO Algorithm for the Analog Circuits Design Optimization. International Journal of Computer Sciences Issues. 2012; 9(3):360–67.
  • Manjula S, Selvathi D. Design and optimization of ultra low power low noise amplifier using particle swarm optimization. Indian Journal of Science and Technology. 2015; 8(36):1-8.
  • Kamisetty S, Garg J, Tripathi JN, Mukherjee J. Optimization of Analog RF Circuit parameters using randomness in particle swarm optimization. Mumbai: 2011 World Congress on Information Communication and Technology. 2011; p. 274–78.
  • Kumar P, Duraiswamy K. An Optimized Device Sizing of Analog Circuits using Particle Swarm Optimization. Journal of Computer Sciences. 2012; 8(6):930–35.
  • Fakhfakh M, Cooren Y, Sallem A, Loulou M, Siarry P. Analog circuit design optimization through the particle swarm optimization technique. Analog Integrated Circuits and Signal Processing. 2010; 63(1):71–82.
  • McConaghy T, Palmers P, Steyaert M, Gielen GGE. Trustworthy genetic programming-based synthesis of analog circuit topologies using hierarchical domain-specific building blocks. IEEE Transactions on Evolutionary Computation. 2011; 15(4):557–70.
  • Pradhan A, Vemuri R. Efficient synthesis of a uniformly spread layout aware pareto surface for analog circuits. New Delhi: Proc 22nd International Conferenceon VLSI Design. 2009; p. 131–36.
  • Deniz E, Dundar G. Hierarchical Performance Estimation of Analog Blocks using Pareto Fronts. Berlin: 2010 Research in Microelectronics and Electronics (PRIME). p. 1-4.
  • Gielen G, McConaghy T, Eeckelaert T. Performance space modeling for hierarchical synthesis of analog integrated circuits. Anaheim, CA: Proceedings - 42nd Design Automation Conference [Internet]. 2005; p. 881–86.
  • Michalewicz Z. Evolutionary computation techniques for nonlinear programming problems. International Transactionsin Operational Research. 1994; 1(2):223–40.
  • Dantzig G. USA: Princeton University Press: Linear Programming and Extensions. 1998.
  • Goldberg DE. USA, Addison Wesley: Genetic Algorithms in Search, Optimization, and Machine Learning. 1989. Available from:
  • Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Berlin Heidelberg: Spinger-Verlag: Computational Statistics & Data Analysis. 1996; 24.
  • Cantu-Paz E, Goldberg DE. On the scalability of parallel genetic algorithms. Evolutionary Computation. 1999; 7(4):429–49.
  • Kicinger R, Arciszewski T, DeJong K. Evolutionary computation and structural design: A survey of the state-of-the-art. Computer Structures. 2005; 83(23-24):1943–78.
  • Zilouchian A, Jamshidi M. USA, CRC Press: Intelligent control systems using soft computing methodologies. 2001.
  • Haupt RL, Haupt SE. USA: Wiley-Blackwell: Practical Genetic Algorithms Second Edition. 2004.
  • Holland JH. USA: University of Michigan Press: Adaptation in Natural and Artificial Systems [Internet]. 1975.
  • Fogel DB. Piscataway, NJ, USA: Wiley: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. 1995.
  • Koza JR. Genetic programming as a means for programming computers by natural selection. Statisticsand Computing. 1994; 4(2):87–112.
  • Back T, Hoffmeister F, Schwefel H-P. A survey of evolution strategies. Proceedings of the Fourth International Conference on Genetic Algorithms. 1991; p. 1–8.
  • Fogel LJ. New York, NY, USA: John Wiley & Sons, Inc.: Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming. 1999.
  • Moscato P. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. USA: Caltech Concurr Comput Program. 1989; p. 1-68.
  • Krasnogor N, Smith J. A tutorial for competent memetic algorithms: Model, taxonomy, and design issues. IEEE Transactions on Evolutionary Computation. 2005; 9(5):474–88.
  • Ong Y-S, Krasnogor N, Ishibuchi H. Special Issue on Memetic Algorithms. IEEE Transactions on System Man, Cybernetics Part B. 2007; 37(1):2–5.
  • Ong YS, Nair PB, Keane AJ, Wong KW. Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. Berlin Heidelberg, Springer-Verlag: Knowledge Incorporation in Evolutionary Computation. 2004; p. 307–31.
  • Bosman PAN, Thierens D. Exploiting Gradient Information in Continuous Iterated Density Estimation Evolutionary Algorithms. Proceedings of the BNAIC-2001 13th Belgium-Netherlands Conference on Artificial Intelligence. 2001; p. 69-76.
  • Bertsekas D. Nonlinear programming. Berkeley, CA: University of California Press: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, J. Neyman (Ed.). 1993.
  • Deb K. An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanicsand Engineering. 2000; 186(2-4):311–38.
  • Coello Coello CA. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods Applied Mechanics and Engineering. 2002; 191(11-12):1245–87.
  • Mezura-Montes E, Velazquez-Reyes J, Coello Coello CA. Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization. Proc 2005 Conference on Genetic Evolutionary Computation - GECCO ’05. 2005; p. 225–32.
  • Zitzler E. Zurich: Swiss Fedral Institute of Technology: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. 1999.
  • Schaffer JD. Nashville, USA: Vanderbilt University: Some experiments in machine learning using vector evaluated genetic algorithms. 1984.
  • Fonseca CM, Fleming PJ. Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. Proceedings of the International Conference on Genetic Alogrithms.1993; p. 416–23.
  • Fonseca CM, Fleming PJ. Multiobjective optimization and multiple constraint handling with evolutionary algorithms - Part I: A unified formulation. IEEE Transactions on Systems Man, Cybernetics Part A: Systems Humans. 1998; 28(1):26–37.
  • Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computations. 2002; 6(2):182–97.
  • Horn J, Nafpliotis N, Goldberg DE. A niched Pareto genetic algorithm for multiobjective optimization. Orlando, FL: Proc First IEEE Conferenceon Evolutionary Computation IEEE World Congr Comput Intelligence. 1994; 1:82–87.
  • Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems Man, Cybernetics Part B Cybernetics. 1996; 26(1):29–41.
  • Kennedy J, Eberhart R. Particle swarm optimization. Perth, WA: 1995 Proceedings, IEEE Int Conference on Neural Networks. 1995; 4:1942–48.
  • Larranaga P, Lozano JA. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, A New Tool for Evolutionary Computation. New York: Springer-Sciences. 2002.
  • Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997; 11(4):341–59.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.